Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Bacteriol ; 191(5): 1695-702, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19114495

RESUMEN

Alternative sigma factors allow bacteria to reprogram global transcription rapidly and to adapt to changes in the environment. Here we report on growth- and cell division-dependent sigma(32) regulon activity in Escherichia coli in batch culture. By analyzing sigma(32) expression in growing cells, an increase in sigma(32) protein levels is observed during the first round of cell division after exit from stationary phase. Increased sigma(32) protein levels result from transcriptional activation of the rpoH gene. After the first round of bulk cell division, rpoH transcript levels and sigma(32) protein levels decrease again. The late-logarithmic phase and the transition to stationary phase are accompanied by a second increase in sigma(32) levels and enhanced stability of sigma(32) protein but not by enhanced transcription of rpoH. Throughout growth, sigma(32) target genes show expression patterns consistent with oscillating sigma(32) protein levels. However, during the transition to early-stationary phase, despite high sigma(32) protein levels, the transcription of sigma(32) target genes is downregulated, suggesting functional inactivation of sigma(32). It is deduced from these data that there may be a link between sigma(32) regulon activity and cell division events. Further support for this hypothesis is provided by the observation that in cells in which FtsZ is depleted, sigma(32) regulon activation is suppressed.


Asunto(s)
División Celular , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Regulón , Factor sigma/genética , Factor sigma/metabolismo , Recuento de Colonia Microbiana , Medios de Cultivo , Escherichia coli/citología , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
2.
J Bacteriol ; 189(16): 5885-94, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17586648

RESUMEN

Transcription of DNA transfer genes is a prerequisite for conjugative DNA transfer of F-like plasmids. Transfer gene expression is sensed by the donor cell and is regulated by a complex network of plasmid- and host-encoded factors. In this study we analyzed the effect of induction of the heat shock regulon on transfer gene expression and DNA transfer in Escherichia coli. Raising the growth temperature from 22 degrees C to 43 degrees C transiently reduced transfer gene expression to undetectable levels and reduced conjugative transfer by 2 to 3 orders of magnitude. In contrast, when host cells carried the temperature-sensitive groEL44 allele, heat shock-mediated repression was alleviated. These data implied that the chaperonin GroEL was involved in negative regulation after heat shock. Investigation of the role of GroEL in this regulatory process revealed that, in groEL(Ts) cells, TraJ, the plasmid-encoded master activator of type IV secretion (T4S) system genes, was less susceptible to proteolysis and had a prolonged half-life compared to isogenic wild-type E. coli cells. This result suggested a direct role for GroEL in proteolysis of TraJ, down-regulation of T4S system gene expression, and conjugation after heat shock. Strong support for this novel role for GroEL in regulation of bacterial conjugation was the finding that GroEL specifically interacted with TraJ in vivo. Our results further suggested that in wild-type cells this interaction was followed by rapid degradation of TraJ whereas in groEL(Ts) cells TraJ remained trapped in the temperature-sensitive GroEL protein and thus was not amenable to proteolysis.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Chaperonina 60/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Conjugación Genética/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Respuesta al Choque Térmico , Operón , Péptido Hidrolasas/metabolismo , Plásmidos/genética
3.
J Bacteriol ; 188(18): 6611-21, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16952953

RESUMEN

Conditions perturbing protein homeostasis are known to induce cellular stress responses in prokaryotes and eukaryotes. Here we show for the first time that expression and assembly of a functional type IV secretion (T4S) machinery elicit extracytoplasmic and cytoplasmic stress responses in Escherichia coli. After induction of T4S genes by a nutritional upshift and assembly of functional DNA transporters encoded by plasmid R1-16, host cells activated the CpxAR envelope stress signaling system, as revealed by induction or repression of downstream targets of the CpxR response regulator. Furthermore, we observed elevated transcript levels of cytoplasmic stress genes, such as groESL, with a concomitant increase of sigma(32) protein levels in cells expressing T4S genes. A traA null mutant of plasmid R1-16, which lacks the functional gene encoding the major pilus protein pilin, showed distinctly reduced stress responses. These results corroborated our conclusion that the activation of bacterial stress networks was dependent on the presence of functional T4S machinery. Additionally, we detected increased transcription from the rpoHp(1) promoter in the presence of an active T4S system. Stimulation of rpoHp(1) was dependent on the presence of CpxR, suggesting a hitherto undocumented link between CpxAR and sigma(32)-regulated stress networks.


Asunto(s)
Adaptación Fisiológica , Escherichia coli/fisiología , Regulación Bacteriana de la Expresión Génica , Proteínas Bacterianas , Transporte Biológico , Chaperoninas/biosíntesis , Conjugación Genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/fisiología , Perfilación de la Expresión Génica , Genes Bacterianos , Proteínas de Choque Térmico/biosíntesis , Proteínas de Choque Térmico/genética , Modelos Biológicos , Mutación , Pili Sexual/genética , Pili Sexual/metabolismo , Plásmidos/genética , Proteínas Quinasas/fisiología , ARN Bacteriano/análisis , ARN Mensajero/análisis , Regulón/fisiología , Factor sigma/biosíntesis , Factor sigma/genética , Transcripción Genética
4.
Microbiology (Reading) ; 151(Pt 11): 3455-3467, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16272370

RESUMEN

Specialized lytic transglycosylases are muramidases capable of locally degrading the peptidoglycan meshwork of Gram-negative bacteria. Specialized lytic transglycosylase genes are present in clusters encoding diverse macromolecular transport systems. This paper reports the analysis of selected members of the specialized lytic transglycosylase family from type III and type IV secretion systems. These proteins were analysed in vivo by assaying their ability to complement the DNA transfer defect of the conjugative F-like plasmid R1-16 lacking a functional P19 protein, the specialized lytic transglycosylase of this type IV secretion system. Heterologous complementation was accomplished using IpgF from the plasmid-encoded type III secretion system of Shigella sonnei and TrbN from the type IV secretion system of the conjugative plasmid RP4. In contrast, neither VirB1 proteins (Agrobacterium tumefaciens, Brucella suis) nor IagB (Salmonella enterica) could functionally replace P19. In vitro, IpgF, IagB, both VirB1 proteins, HP0523 (Helicobacter pylori) and P19 displayed peptidoglycanase activity in zymogram analyses. Using an established test system and a newly developed assay it was shown that IpgF degraded peptidoglycan in solution. IpgF was active only after removal of the chaperonin GroEL, which co-purified with IpgF and inhibited its enzymic activity. A mutant IpgF protein in which the predicted catalytic amino acid, Glu42, was replaced by Gln, was completely inactive. IpgF-catalysed peptidoglycan degradation was optimal at pH 6 and was inhibited by the lytic transglycosylase inhibitors hexa-N-acetylchitohexaose and bulgecin A.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glicosiltransferasas/metabolismo , Bacterias Gramnegativas/enzimología , Peptidoglicano/metabolismo , Carbocianinas/metabolismo , Conjugación Genética , Colorantes Fluorescentes/metabolismo , Prueba de Complementación Genética , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/metabolismo , Muramidasa/metabolismo , Mutación , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA