Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Am Chem Soc ; 143(8): 3124-3142, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33615780

RESUMEN

The development of high-fidelity mechanisms for chemically reactive systems is a challenging process that requires the compilation of rate descriptions for a large and somewhat ill-defined set of reactions. The present unified combination of modeling, experiment, and theory provides a paradigm for improving such mechanism development efforts. Here we combine broadband rotational spectroscopy with detailed chemical modeling based on rate constants obtained from automated ab initio transition state theory-based master equation calculations and high-level thermochemical parametrizations. Broadband rotational spectroscopy offers quantitative and isomer-specific detection by which branching ratios of polar reaction products may be obtained. Using this technique, we observe and characterize products arising from H atom substitution reactions in the flash pyrolysis of acetone (CH3C(O)CH3) at a nominal temperature of 1800 K. The major product observed is ketene (CH2CO). Minor products identified include acetaldehyde (CH3CHO), propyne (CH3CCH), propene (CH2CHCH3), and water (HDO). Literature mechanisms for the pyrolysis of acetone do not adequately describe the minor products. The inclusion of a variety of substitution reactions, with rate constants and thermochemistry obtained from automated ab initio kinetics predictions and Active Thermochemical Tables analyses, demonstrates an important role for such processes. The pathway to acetaldehyde is shown to be a direct result of substitution of acetone's methyl group by a free H atom, while propene formation arises from OH substitution in the enol form of acetone by a free H atom.

2.
J Chem Phys ; 149(10): 104106, 2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-30219013

RESUMEN

A typical broadband rotational spectrum may contain several thousand observable transitions, spanning many species. While these spectra often encode troves of chemical information, identifying and assigning the individual spectra can be challenging. Traditional approaches typically involve visually identifying a pattern. A more modern approach is to apply an automated fitting routine. In this approach, combinations of 3 transitions are searched by trial and error, to fit the A, B, and C rotational constants in a Watson-type Hamiltonian. In this work, we develop an alternative approach-to utilize machine learning to train a computer to recognize the patterns inherent in rotational spectra. Broadband high-resolution rotational spectra are perhaps uniquely suited for pattern recognition, assignment, and species identification using machine learning. Repeating patterns of transition frequencies and intensities are now routinely recorded in broadband chirped-pulse Fourier transform microwave experiments in which both the number of resolution elements and the dynamic range surpass 104. At the same time, these high-resolution spectra are extremely sensitive to molecular geometry with each polar species having a unique rotational spectrum. Here we train the feed forward neural network on thousands of rotational spectra that we calculate, using the rules of quantum mechanics, from randomly generated sets of rotational constants and other Hamiltonian parameters. Reasonable physical constraints are applied to these parameter sets, yet they need not belong to existing species. A trained neural network presented with a spectrum identifies its type (e.g., linear molecule, symmetric top, or asymmetric top) and infers the corresponding Hamiltonian parameters (rotational constants, distortion, and hyperfine constants). The classification and prediction times, about 160 µs and 50 µs, respectively, seem independent of the spectral complexity or the number of molecular parameters. We describe how the network works, provide benchmarking results, and discuss future directions.

3.
J Chem Phys ; 146(13): 134305, 2017 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-28390374

RESUMEN

We report the first experimental gas-phase observation of an asymmetric, trans-N2O4 formed by the dimerization of NO2. In additional to the dominant 14N216O4 species, rotational transitions have been observed for all species with single 15N and 18O substitutions as well as several multiply substituted isotopologues. These transitions were used to determine a complete substitution structure as well as an r0 structure from the fitted zero-point averaged rotational constants. The determined structure is found to be that of an ON-O-NO2 linkage with the shared oxygen atom closer to the NO2 than the NO (1.42 vs 1.61 Å). The structure is found to be nearly planar with a trans O-N-O-N linkage. From the spectra of the 14N15NO4 species, we were able to determine the nuclear quadrupole coupling constants for each specific nitrogen atom. The equilibrium structure determined by ab initio quantum chemistry calculations is in excellent agreement with the experimentally determined structure. No spectral evidence of the predicted asymmetric, cis-N2O4 was found in the spectra.

4.
Chemphyschem ; 17(8): 1154-8, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-26812549

RESUMEN

An isolated, gas-phase dimer of imidazole is generated through laser vaporisation of a solid rod containing a 1:1 mixture of imidazole and copper in the presence of an argon buffer gas undergoing supersonic expansion. The complex is characterised through broadband rotational spectroscopy and is shown to have a twisted, hydrogen-bonded geometry. Calculations at the CCSD(T)(F12*)/cc-pVDZ-F12 level of theory confirm this to be the lowest-energy conformer of the imidazole dimer. The distance between the respective centres of mass of the imidazole monomer subunits is determined to be 5.2751(1) Å, and the twist angle γ describing rotation of one monomer with respect to the other about a line connecting the centres of mass of the monomers is determined to be 87.9(4)°. Four out of six intermolecular parameters in the model geometry are precisely determined from the experimental rotational constants and are consistent with results calculated ab initio.

5.
Phys Chem Chem Phys ; 18(19): 13638-45, 2016 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-27139221

RESUMEN

Complexes of H3NCuF and H3NCuI have been synthesised in the gas phase and characterized by microwave spectroscopy. The rotational spectra of 4 isotopologues of H3NCuF and 5 isotopologues of H3NCuI have been measured in the 6.5-18.5 GHz frequency range using a chirped-pulse Fourier transform microwave spectrometer. Each complex is generated from a gas sample containing NH3 and a halogen-containing precursor diluted in Ar. Copper is introduced by laser ablation of a solid target prior to supersonic expansion of the sample into the vacuum chamber of the microwave spectrometer. The spectrum of each complex is characteristic of a symmetric rotor and a C3v geometry in which the N, Cu and X atoms (where X is F or I) lie on the C axis. The rotational constant (B0), centrifugal distortion constants (DJ and DJK), nuclear spin-rotation (Cbb(Cu) = Ccc(Cu)) constant (for H3NCuF only) and nuclear quadrupole coupling constants (χaa(X) where (X = N, Cu, I)) are fitted to the observed transition frequencies. Structural parameters are determined from the measured rotational constants and also calculated ab initio at the CCSD(T)(F12*)/AVQZ level of theory. Force constants describing the interaction between ammonia and each metal halide are determined from DJ for each complex. Trends in the interaction strengths and geometries of BCuX (B = NH3, CO) (X = F, Cl, Br, I) are discussed.

6.
Phys Chem Chem Phys ; 18(32): 22693-705, 2016 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-27478937

RESUMEN

The rotational spectra of thioisocyanic acid (HNCS), and its three energetic isomers (HSCN, HCNS, and HSNC) have been observed at high spectral resolution by a combination of chirped-pulse and Fabry-Pérot Fourier-transform microwave spectroscopy between 6 and 40 GHz in a pulsed-jet discharge expansion. Two isomers, thiofulminic acid (HCNS) and isothiofulminic acid (HSNC), calculated here to be 35-37 kcal mol(-1) less stable than the ground state isomer HNCS, have been detected for the first time. Precise rotational, centrifugal distortion, and nitrogen hyperfine coupling constants have been determined for the normal and rare isotopic species of both molecules; all are in good agreement with theoretical predictions obtained at the coupled cluster level of theory. On the basis of isotopic spectroscopy, precise molecular structures have been derived for all four isomers by correcting experimental rotational constants for the effects of rotation-vibration interaction calculated theoretically. Formation and isomerization pathways have also been investigated; the high abundance of HSCN relative to ground state HNCS, and the detection of strong lines of SH using CH3CN and H2S, suggest that HSCN is preferentially produced by the radical-radical reaction HS + CN. A radio astronomical search for HSCN and its isomers has been undertaken toward the high-mass star-forming region Sgr B2(N) in the Galactic Center with the 100 m Green Bank Telescope. While we find clear evidence for HSCN, only a tentative detection of HNCS is proposed, and there is no indication of HCNS or HSNC at the same rms noise level. HSCN, and tentatively HNCS, displays clear deviations from a single-excitation temperature model, suggesting weak masing may be occurring in some transitions in this source.

7.
Angew Chem Int Ed Engl ; 55(11): 3768-71, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26879473

RESUMEN

Carbenes of platinum and palladium, PtC3 and PdC3 , were generated in the gas phase through laser vaporization of a metal target in the presence of a low concentration of a hydrocarbon precursor undergoing supersonic expansion. Rotational spectroscopy and ab initio calculations confirm that both molecules are linear. The geometry of PtC3 was accurately determined by fitting to the experimental moments of inertia of twenty-six isotopologues. The results are consistent with the proposal of an autogenic isolobal relationship between O, Au(+) , and Pt atoms.

8.
Chemphyschem ; 16(12): 2630-4, 2015 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-26175274

RESUMEN

A weakly-bound complex of SF6 and NH3 is generated within an expanding gas jet and characterised by broadband rotational spectroscopy. The spectra of isotopologues (32) SF6 ⋅⋅⋅(14) NH3 , (32) SF6 ⋅⋅⋅(14) ND3 , (32) SF6 ⋅⋅⋅(15) NH3 and (34) SF6 ⋅⋅⋅(15) NH3 are observed and assigned to determine the spectroscopic parameters. These parameters are consistent with the complex having a C3v symmetric rotor geometry, in which the nitrogen atom of NH3 coordinates to SF6 such that the C3v axis of the NH3 sub-unit is aligned with a local C3 axis on the SF6 sub-unit. The geometry of the complex is rationalized in terms of a σ-hole interaction. The observed spectra and ab initio calculations also reveal evidence of internal dynamics involving internal rotation of one monomer sub-unit with respect to the other about the symmetry axis of the complex.

9.
Phys Chem Chem Phys ; 17(29): 18857, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26134582

RESUMEN

A new molecule C2H2···CuF has been synthesized in the gas phase by means of the reaction of laser-ablated metallic copper with a pulse of gas consisting of a dilute mixture of ethyne and sulfur hexafluoride in argon. The ground-state rotational spectrum was detected by two types of Fourier-transform microwave spectroscopy, namely that conducted in a microwave Fabry-Perot cavity and the chirped-pulse broadband technique. The spectroscopic constants of the six isotopologues 12C2H2···63Cu19F, 12C2H2···65Cu19F, 13C2H2···63Cu19F, 13C2H2···65Cu19F, 12C2D2···63Cu19F and 12C2D2···65Cu19F were determined and interpreted to show that the molecule has a planar, T-shaped geometry belonging to the molecular point group C 2v, with CuF forming the stem of the T. Quantitative interpretation reveals that the ethyne molecule is distorted when subsumed into the complex in such manner that the C[triple bond, length as m-dash]C bond lengthens (by δr) and the two H atoms cease to be collinear with the C[triple bond, length as m-dash]C internuclear line. The H atoms move symmetrically away from the approaching Cu atom of CuF, to increase each *[triple bond, length as m-dash]C-H angle by δA = 14.65(2)°, from 180° to 194.65(2)°. Ab initio calculations at the explicitly-correlated level of theory CCSD(T)(F12*)/aug-cc-pVTZ lead to good agreement with the experimental geometry. It is shown that similar distortions δr and δA, similarly determined, for four complexes C2H2···MX (M = Cu or Ag; X = F, Cl or CCH) are approximately linearly related to the energies D e for the dissociation process C2H2···MX = C2H2 + MX.

10.
J Phys Chem A ; 119(12): 2919-25, 2015 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-25732940

RESUMEN

The new linear molecule Ag-C≡C-Cl has been detected and fully characterized by means of rotational spectroscopy. It was synthesized by laser ablation of a silver rod in the presence of a gaseous sample containing a low concentration of CCl4 in argon, cooled to a rotational temperature approaching ∼1-3 K through supersonic expansion, and analyzed by chirped-pulse, Fourier transform microwave spectroscopy. Six isotopologues were investigated, and for each the spectroscopic constants B0, D(J) and χ(aa)(Cl) were determined. The B0 values were interpreted to give the following bond lengths: r(Ag-C) = 2.015(14) Å and r(C-Cl) = 1.635(6) Å, with r(C≡C) = 1.2219 Å assumed from an ab initio calculation at the CCSD(T)/aug-cc-pV5Z level of theory. The Cu analogue Cu-C≡C-Cl was similarly identified and characterized.

11.
J Phys Chem A ; 119(37): 9636-43, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26305995

RESUMEN

A molecular complex of C2H2 and AuI has been generated and isolated in the gas phase through laser ablation of a gold surface in the presence of an expanding sample containing small percentages of C2H2 and CF3I in a buffer gas of argon. Rotational, B0, centrifugal distortion, ΔJ and ΔJK, and nuclear quadrupole coupling constants, χaa(Au), χbb(Au) - χcc(Au), χaa(I), and χbb(I) - χcc(I), are measured for three isotopologues of C2H2···AuI through broadband rotational spectroscopy. The complex is C2v and T-shaped with C2H2 coordinating to the gold atom via donation of electrons from the π-orbitals of ethyne. On formation of the complex, the C≡C bond of ethyne extends by 0.032(4) Å relative to r(C≡C) in isolated ethyne when the respective r0 geometries are compared. The geometry of ethyne distorts such that ∠(*-C-H) (where * indicates the midpoint of the C≡C bond) is 194.7(12)° in the r0 geometry of C2H2···AuI. Ab initio calculations at the CCSD(T)(F12*)/AVTZ level are consistent with the experimentally determined geometry and further allow calculation of the dissociation energy (De) as 136 kJ mol(-1). The χaa(Au) and χaa(I) nuclear quadrupole coupling constants of AuI and also the Au-I bond length change significantly on formation of the complex consistent with the strong interaction calculated to occur between C2H2 and AuI.

12.
J Chem Phys ; 143(24): 244309, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26723673

RESUMEN

Pure rotational spectra of the ground electronic states of lead monoiodide and tin monoiodide have been measured using a chirped pulsed Fourier transform microwave spectrometer over the 7-18.5 GHz region for the first time. Each of PbI and SnI has a X (2)Π1/2 ground electronic state and may have a hyperfine structure that aids the determination of the electron electric dipole moment. For each species, pure rotational transitions of a number of different isotopologues and their excited vibrational states have been assigned and fitted. A multi-isotopologue Dunham-type analysis was carried out on both species producing values for Y01, Y02, Y11, and Y21, along with Λ-doubling constants, magnetic hyperfine constants and nuclear quadrupole coupling constants. The Born-Oppenheimer breakdown parameters for Pb have been evaluated and the parameter rationalized in terms of finite nuclear field effects. Analysis of the bond lengths and hyperfine interaction indicates that the bonding in both PbI and SnI is ionic in nature. Equilibrium bond lengths have been evaluated for both species.

13.
J Chem Phys ; 143(16): 164314, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26520520

RESUMEN

Strongly bound complexes (CH2)3⋯MCl (M = Cu or Ag), formed by non-covalent interaction of cyclopropane and either cuprous chloride or argentous chloride, have been generated in the gas phase by means of the laser ablation of either copper or silver metal in the presence of supersonically expanded pulses of a gas mixture containing small amounts of cyclopropane and carbon tetrachloride in a large excess of argon. The rotational spectra of the complexes so formed were detected with a chirped-pulse, Fourier transform microwave spectrometer and analysed to give rotational constants and Cu and Cl nuclear quadrupole coupling constants for eight isotopologues of each of (CH2)3⋯CuCl and (CH2)3⋯AgCl. The geometry of each of these complexes was established unambiguously to have C(2v) symmetry, with the three C atoms coplanar, and with the MCl molecule lying along a median of the cyclopropane C3 triangle. This median coincides with the principal inertia axis a in each of the two complexes (CH2)3⋯MCl. The M atom interacts with the pseudo-π bond linking the pair of equivalent carbon atoms (F)C (F = front) nearest to it, so that M forms a non-covalent bond to one C-C edge of the cyclopropane molecule. The (CH2)3⋯MCl complexes have similar angular geometries to those of the hydrogen- and halogen-bonded analogues (CH2)3⋯HCl and (CH2)3⋯ClF, respectively. Quantitative details of the geometries were determined by interpretation of the observed rotational constants and gave results in good agreement with those from ab initio calculations carried out at the CCSD(T)(F12*)/aug-cc-pVTZ-F12 level of theory. Interesting geometrical features are the lengthening of the (F)C-(F)C bond and the shrinkage of the two equivalent (B)C-(F)C (B = back) bonds relative to the C-C bond in cyclopropane itself. The expansions of the (F)C-(F)C bond are 0.1024(9) Å and 0.0727(17) Å in (CH2)3⋯CuCl and (CH2)3⋯AgCl, respectively, according to the determined r0 geometries. The C-C bond lengthening is in each case about four times that observed by similar methods in the corresponding complexes of MCl with ethyne and ethene, even though the cyclopropane complexes are more weakly bound than their ethyne and ethene analogues. Reasons for the larger increase in r(CC) in the pseudo-π complexes are discussed.

14.
J Chem Phys ; 142(14): 144302, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25877573

RESUMEN

The H3N⋯CuCl monomer has been generated and isolated in the gas phase through laser vaporisation of a copper sample in the presence of low concentrations of NH3 and CCl4 in argon. The resulting complex cools to a rotational temperature approaching 2 K during supersonic expansion of the gas sample and is characterised by broadband rotational spectroscopy between 7 and 18.5 GHz. The spectra of six isotopologues are measured and analysed to determine rotational, B0; centrifugal distortion, DJ, DJK; and nuclear quadrupole coupling constants of Cu, Cl, and (14)N nuclei, χaa (X). The geometry of the complex is C3v with the N, Cu, and Cl atoms located on the a inertial axis. Bond distances and the ∠(H -N⋯Cu) bond angle within the complex are precisely evaluated through fitting of geometrical parameters to the experimentally determined moments of inertia and through ab initio calculations at the CCSD(T)(F12*)/AVQZ level. The r(Cu -Cl), r(Cu -N), and ∠(H -N⋯Cu) parameters are, respectively, evaluated to be 2.0614(7) Å, 1.9182(13) Å, and 111.40(6)° in the r0 geometry, in good agreement with the ab initio calculations. Geometrical parameters evaluated for the isolated complex are compared with those established crystallographically for a solid-state sample of [Cu(NH3)Cl].

15.
Angew Chem Int Ed Engl ; 54(3): 979-82, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-25413278

RESUMEN

A structural study of microsolvated clusters of ß-propiolactone (BPL) formed in a pulsed molecular jet expansion is presented. The rotational spectra of BPL-(H2O)n (n=1-5) adducts have been analyzed by broadband microwave spectroscopy. Unambiguous identification of the structures has been achieved using isotopic substitution and experimental measurements of the cluster dipole moment. The observed structures are discussed in terms of the different intermolecular interactions between water molecules and between water and BPL, which include n-π* interactions involving the lone pairs of electrons on water oxygen atoms and the antibonding orbital of the BPL carbonyl group. The changes induced in the structures of the water hydrogen-bonding network by complexation to BPL indicate that water clusters adopt specific configurations to maximize their links to solute molecules.


Asunto(s)
Propiolactona/química , Soluciones/química , Agua/química , Enlace de Hidrógeno , Isomerismo , Marcaje Isotópico , Espectrofotometría Infrarroja
16.
Phys Chem Chem Phys ; 16(46): 25221-8, 2014 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-25340728

RESUMEN

Broadband rotational spectroscopy provides a new method by which plasma chemistry can be explored. Molecules and complexes form when precursors within an expanding gas sample are allowed to interact with plasma generated by an electrical discharge or laser vaporisation of a solid. It is thus possible to selectively generate specific molecules or complexes for study through a careful choice of appropriate precursors. It is also possible to survey an extensive range of the products formed under a given set of initial conditions in an approach termed "broadband reaction screening". Broadband rotational spectroscopy provides an opportunity to simultaneously monitor the transitions of many different chemical products and this allows broader details of reaction pathways to be inferred. This Perspective will describe various experimental approaches and review recent works that have applied broadband rotational spectroscopy to study molecules and complexes generated (in whole or in part) through chemistry occurring within transient plasma.

17.
J Chem Phys ; 140(12): 124310, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24697444

RESUMEN

The rotational spectra of six isotopologues of a complex of ethyne and silver acetylide, C2H2⋅⋅⋅AgCCH, are measured by both chirped-pulse and Fabry-Perot cavity versions of Fourier-transform microwave spectroscopy. The complex is generated through laser ablation of a silver target in the presence of a gas sample containing 1% C2H2, 1% SF6, and 98% Ar undergoing supersonic expansion. Rotational, A0, B0, C0, and centrifugal distortion ΔJ and ΔJK constants are determined for all isotopologues of C2H2⋅⋅⋅AgCCH studied. The geometry is planar, C2v and T-shaped in which the C2H2 sub-unit comprises the bar of the "T" and binds to the metal atom through its π electrons. In the r0 geometry, the distance of the Ag atom from the centre of the triple bond in C2H2 is 2.2104(10) Å. The r(HC≡CH) parameter representing the bond distance separating the two carbon atoms and the angle, ∠(CCH), each defined within the C2H2 sub-unit, are determined to be 1.2200(24) Å and 186.0(5)°, respectively. This distortion of the linear geometry of C2H2 involves the hydrogen atoms moving away from the silver atom within the complex. The results thus reveal that the geometry of C2H2 changes measurably on coordination to AgCCH. A value of 59(4) N m(-1) is determined for the intermolecular force constant, kσ, confirming that the complex is significantly more strongly bound than hydrogen and halogen-bonded analogues. Ab initio calculations of the re geometry at the CCSD(T)(F12(*))/ACVTZ level of theory are consistent with the experimental results. The spectra of the (107)Ag(13)C(13)CH and (109)Ag(13)C(13)CH isotopologues of free silver acetylide are also measured for the first time allowing the geometry of the AgCCH monomer to be examined in greater detail than previously.

18.
Angew Chem Int Ed Engl ; 53(52): 14368-72, 2014 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-25348841

RESUMEN

Broadband rotational spectroscopy of water clusters produced in a pulsed molecular jet expansion has been used to determine the oxygen atom geometry in three isomers of the nonamer and two isomers of the decamer. The isomers for each cluster size have the same nominal geometry but differ in the arrangement of their hydrogen bond networks. The nearest neighbor OO distances show a characteristic pattern for each hydrogen bond network isomer that is caused by three-body effects that produce cooperative hydrogen bonding. The observed structures are the lowest energy cluster geometries identified by quantum chemistry and the experimental and theoretical OO distances are in good agreement. The cooperativity effects revealed by the hydrogen bond OO distance variations are shown to be consistent with a simple model for hydrogen bonding in water that takes into account the cooperative and anticooperative bonding effects of nearby water molecules.


Asunto(s)
Agua/química , Hidrógeno/química , Enlace de Hidrógeno , Conformación Molecular , Oxígeno/química , Teoría Cuántica
19.
Angew Chem Int Ed Engl ; 53(12): 3210-3, 2014 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-24520035

RESUMEN

Cooperativity between weak hydrogen bonds can be revealed in molecular clusters isolated in the gas phase. Here we examine the structure, internal dynamics, and origin of the weak intermolecular forces between sevoflurane and a benzene molecule, using multi-isotopic broadband rotational spectra. This heterodimer is held together by a primary C-H⋅⋅⋅π hydrogen bond, assisted by multiple weak C-H⋅⋅⋅F interactions. The multiple nonbonding forces hinder the internal rotation of benzene around the isopropyl C-H bond in sevoflurane, producing detectable quantum tunneling effects in the rotational spectrum.


Asunto(s)
Benceno/química , Hidrógeno/química , Éteres Metílicos/química , Enlace de Hidrógeno , Sevoflurano
20.
Phys Chem Chem Phys ; 15(27): 11468-77, 2013 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-23749053

RESUMEN

The structures of the phenol dimer and phenol trimer complexes in the gas phase have been determined using chirped-pulse Fourier transform microwave spectroscopy in the 2-8 GHz band. All fourteen (13)C and (18)O phenol dimer isotopologues were assigned in natural abundance. A full heavy atom experimental substitution structure was determined, and a least-squares fit ground state r0 structure was determined by proper constraint of the M06-2X/6-311++g(d,p) ab initio structure. The structure of phenol dimer features a water dimer-like hydrogen bond, as well as a cooperative contribution from inter-ring dispersion. Comparisons between the experimental structure and previously determined experimental structures, as well as ab initio structures from various levels of theory, are discussed. For phenol trimer, a C3 symmetric barrel-like structure is found, and an experimental substitution structure was determined via measurement of the six unique (13)C isotopologues. The least-squares fit rm((1)) structure reveals a similar interplay between hydrogen bonding and dispersion in the trimer, with water trimer-like hydrogen bonding and C-H···π interactions.


Asunto(s)
Microondas , Fenol/química , Dimerización , Análisis de Fourier , Enlace de Hidrógeno , Estructura Molecular , Teoría Cuántica , Rotación , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA