Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Chemistry ; 30(5): e202302688, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37930277

RESUMEN

In one-dimensional polycyclic aromatic hydrocarbons (PAHs) containing five- and six-membered rings fused together, one key question is whether the structures possess a quinoidal or aromatic diradical character. Here, we generate such PAHs by reversible oxidation of PAH-extended tetrathiafulvalenes (TTFs). Extended TTFs were thus prepared and studied for their geometrical properties (crystallography), redox properties, and UV/Vis/NIR/EPR characteristics as a function of charge state. The EPR measurements of radical cations showed unique features for each PAH-TTF. The dications, formally composed of fluoreno[3,2-b]fluorene and diindeno[1,2-b:1',2'-i]anthracene cores, were experimentally found to exhibit singlet ground states. For the latter, calculations reveal the closed shell, quinoid singlet state to be isoenergetic with the open shell singlet diradical. Each charge state exhibited unique optical properties with radical cations absorbing strongly in the NIR region with signatures from π-dimers for the large core. The experimental results were paralleled and supported by detailed computations, including spin density distribution calculations, EPR simulations, and nucleus independent chemical shift (NICS) xy scans.

2.
Theor Chem Acc ; 143(4): 26, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495857

RESUMEN

The anti (a) to syn (s) isomerization pathway of the deprotonated form of the dimer with two nickel(II) 15-membered octaazamacrocyclic units connected via a carbon-carbon (C-C) σ bond was investigated. For the initial anti (a) structure, a deprotonation of one of the bridging (sp3 hybridized) carbon atoms is suggested to allow for an a to s geometry twist. A 360° scan around the bridging C-C dihedral angle was performed first to find an intermediate geometry. Subsequently, the isomerization pathway was explored via individual steps using a series of mode redundant geometry optimizations (internal coordinates potential energy surface scans) and geometry relaxations leading to the s structure. The prominent geometries (intermediates) of the isomerization pathway are chosen and compared to the a and s structures, and geometry relaxations of the protonated forms of selected intermediates are considered. Supplementary Information: The online version contains supplementary material available at 10.1007/s00214-024-03100-5.

3.
Inorg Chem ; 61(2): 950-967, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34962391

RESUMEN

The ruthenium nitrosyl moiety, {RuNO}6, is important as a potential releasing agent of nitric oxide and is of inherent interest in coordination chemistry. Typically, {RuNO}6 is found in mononuclear complexes. Herein we describe the synthesis and characterization of several multimetal cluster complexes that contain this unit. Specifically, the heterotrinuclear µ3-oxido clusters [Fe2RuCl4(µ3-O)(µ-OMe)(µ-pz)2(NO)(Hpz)2] (6) and [Fe2RuCl3(µ3-O)(µ-OMe)(µ-pz)3(MeOH)(NO)(Hpz)][Fe2RuCl3(µ3-O)(µ-OMe)(µ-pz)3(DMF)(NO)(Hpz)] (7·MeOH·2H2O) and the heterotetranuclear µ4-oxido complex [Ga3RuCl3(µ4-O)(µ-OMe)3(µ-pz)4(NO)] (8) were prepared from trans-[Ru(OH)(NO)(Hpz)4]Cl2 (5), which itself was prepared via acidic hydrolysis of the linear heterotrinuclear complex {[Ru(µ-OH)(µ-pz)2(pz)(NO)(Hpz)]2Mg} (4). Complex 4 was synthesized from the mononuclear Ru complexes (H2pz)[trans-RuCl4(Hpz)2] (1), trans-[RuCl2(Hpz)4]Cl (2), and trans-[RuCl2(Hpz)4] (3). The new compounds 4-8 were all characterized by elemental analysis, ESI mass spectrometry, IR, UV-vis, and 1H NMR spectroscopy, and single-crystal X-ray diffraction, with complexes 6 and 7 being characterized also by temperature-dependent magnetic susceptibility measurements and Mössbauer spectroscopy. Magnetometry indicated a strong antiferromagnetic interaction between paramagnetic centers in 6 and 7. The ability of 4 and 6-8 to form linkage isomers and release NO upon irradiation in the solid state was investigated by IR spectroscopy. A theoretical investigation of the electronic structure of 6 by DFT and ab initio CASSCF/NEVPT2 calculations indicated a redox-noninnocent behavior of the NO ancillary ligand in 6, which was also manifested in TD-DFT calculations of its electronic absorption spectrum. The electronic structure of 6 was also studied by an X-ray charge density analysis.

4.
Molecules ; 26(14)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34299414

RESUMEN

Two 15-membered octaazamacrocyclic nickel(II) complexes are investigated by theoretical methods to shed light on their affinity forwards binding and reducing CO2. In the first complex 1[NiIIL]0, the octaazamacrocyclic ligand is grossly unsaturated (π-conjugated), while in the second 1[NiIILH]2+ one, the macrocycle is saturated with hydrogens. One and two-electron reductions are described using Mulliken population analysis, quantum theory of atoms in molecules, localized orbitals, and domain averaged fermi holes, including the characterization of the Ni-CCO2 bond and the oxidation state of the central Ni atom. It was found that in the [NiLH] complex, the central atom is reduced to Ni0 and/or NiI and is thus able to bind CO2 via a single σ bond. In addition, the two-electron reduced 3[NiL]2- species also shows an affinity forwards CO2.

5.
Chemistry ; 26(50): 11451-11461, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32780914

RESUMEN

Resorcin[4]arene cavitands, equipped with diverse quinone (Q) and [Ru(bpy)2 dppz]2+ (bpy=2,2'-bipyridine, dppz=dipyrido[3,2-a:2',3'-c]phenazine) photosensitizing walls in different configurations, were synthesized. Upon visible-light irradiation at 420 nm, electron transfer from the [Ru(bpy)2 dppz]2+ to the Q generates the semiquinone (SQ) radical anion, triggering a large conformational switching from a flat kite to a vase with a cavity for the encapsulation of small guests, such as cyclohexane and heteroalicyclic derivatives, in CD3 CN. Depending on the molecular design, the SQ radical anion can live for several minutes (≈10 min) and the vase can be generated in a secondary process without need for addition of a sacrificial electron donor to accumulate the SQ state. Switching can also be triggered by other stimuli, such as changes in solvent, host-guest complexation, and chemical and electrochemical processes. This comprehensive investigation benefits the development of stimuli-responsive nanodevices, such as light-activated molecular grippers.

6.
Chemistry ; 25(38): 8982-8986, 2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-31070829

RESUMEN

Tailor-made photoinitiators play an important role for efficient radical polymerisations in aqueous media, especially in hydrogel manufacturing. Bis(acyl)phosphane oxides (BAPOs) are among the most active initiators. Herein, we show that they display a remarkable photochemistry in aqueous and alcoholic media: Photolysis of BAPOs in the presence of water or alcohols provides a new delocalized π-radical, which does not participate in the polymerization. It either converts into a monoacylphosphane oxide acting as a secondary photoactive species or it works as a one-electron reducing agent. Upon the electron-transfer process, it again produces a dormant photoinitiator. We have established the structure and the chemistry of this π radical using steady-state and time-resolved (CIDEP) EPR together with ESI-MS, NMR spectroscopy, and DFT calculations. Our results show that bis(acyl)phosphane oxides act as bifunctional reagents when applied in aqueous and alcoholic media.

7.
Inorg Chem ; 58(16): 11133-11145, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31373487

RESUMEN

Nickel(II) complexes with 15-membered (1-5) and 14-membered (6) octaazamacrocyclic ligands derived from 1,2- and 1,3-diketones and S-methylisothiocarbohydrazide were prepared by template synthesis. The compounds were characterized by elemental analysis, electrospray ionization mass spectrometry, IR, UV-vis, 1H NMR spectroscopies, and X-ray diffraction. The complexes contain a low-spin nickel(II) ion in a square-planar coordination environment. The electrochemical behavior of 1-6 was investigated in detail, and the electronic structure of 1e-oxidized and 1e-reduced species was studied by electron paramagnetic resonance, UV-vis-near-IR spectroelectrochemistry, and density functional theory calculations indicating redox noninnocent behavior of the ligands. Compounds 1-6 were tested in the microwave-assisted solvent-free oxidation of cyclohexane by tert-butyl hydroperoxide to produce the industrially significant mixture of cyclohexanol and cyclohexanone (i.e., A/K oil). The results showed that the catalytic activity was affected by several factors, namely, reaction time and temperature or amount and type of catalyst. The best values for A/K oil yield (23%, turnover number of 1.1 × 102) were obtained with compound 6 after 2 h of microwave irradiation at 100 °C.

8.
J Am Chem Soc ; 140(51): 18082-18092, 2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30453734

RESUMEN

By a combination of electron paramagnetic resonance spectroscopy, finite-temperature ab initio simulations, and electronic structure analyses, the activation of molecular dioxygen at the interface of gold nanoparticles and titania in Au/TiO2 catalysts is explained at the atomic scale by tracing processes down to the molecular orbital picture. Direct evidence is provided that excess electrons in TiO2, for example created by photoexcitation of the semiconductor, migrate to the gold particles and from there to oxygen molecules adsorbed at gold/titania perimeter sites. Superoxide species are formed more efficiently in this way than on the bare TiO2 surface. This catalytic effect of the gold nanoparticles is attributed to a weakening of the internal O-O bond, leading to a preferential splitting of the molecule at shorter bond lengths together with a 70% decrease of the dissociation free energy barrier compared to the non-catalyzed case on bare TiO2. The findings are an important step forward in the clarification of the role of gold in (photo)catalytic processes.

9.
Chemistry ; 24(51): 13616-13623, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30094881

RESUMEN

6,6-Dicyanopentafulvene derivatives and metallocenes with redox potentials appropriate for forming their radical anions form highly persistent donor-acceptor salts. The charge-transfer salts of 2,3,4,5-tetraphenyl-6,6-dicyanofulvene with cobaltocene (1⋅Cp2 Co) and 2,3,4,5-tetrakis(triisopropylsilyl)-6,6-dicyanofulvene with decamethylferrocene (2⋅Fc*) have been prepared. The X-ray structures of the two salts, formed as black plates, were obtained and are discussed herein. Compared with neutral dicyanopentafulvenes, the chromophores in the metallocene salts show substantial changes in bond lengths and torsional angles in the solid state. EPR, NMR, and optical spectroscopy, as well as superconducting quantum interference device (SQUID) measurements, reveal that charge-separation in the crystalline states and in frozen and fluid solutions depends on subtle differences of redox potentials, geometry, and on ion pairing. Whereas 1⋅Cp2 Co reveals paramagnetic character in the crystalline state and in solution, compound 2⋅Fc* shows a delicate balance between para- and diamagnetism, depending on the temperature and solvent characteristics.

10.
Chemistry ; 24(6): 1431-1440, 2018 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-29251363

RESUMEN

Semiquinones (SQ) are generated in photosynthetic organisms upon photoinduced electron transfer to quinones (Q). They are stabilized by hydrogen bonding (HB) with the neighboring residues, which alters the properties of the reaction center. We designed, synthesized, and investigated resorcin[4]arene cavitands inspired by this function of SQ in natural photosynthesis. Cavitands were equipped with alternating quinone and quinoxaline walls bearing hydrogen bond donor groups (HBD). Different HBD were analyzed that mimic natural amino acids, such as imidazole and indole, along with their analogues, pyrrole and pyrazole. Pyrroles were identified as the most promising candidates that enabled the cavitands to remain open in the Q state until strengthening of HB upon reduction to the paramagnetic SQ radical anion provided stabilization of the closed form. The SQ state was generated electrochemically and photochemically, whereas properties were studied by UV/Vis spectroelectrochemistry, transient absorption, and EPR spectroscopy. This study demonstrates a photoredox-controlled conformational switch towards a new generation of molecular grippers.

11.
Inorg Chem ; 57(17): 10702-10717, 2018 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-30106571

RESUMEN

With the aim of enhancing the biological activity of ruthenium-nitrosyl complexes, new compounds with four equatorially bound indazole ligands, namely, trans-[RuCl(Hind)4(NO)]Cl2·H2O ([3]Cl2·H2O) and trans-[RuOH(Hind)4(NO)]Cl2·H2O ([4]Cl2·H2O), have been prepared from trans-[Ru(NO2)2(Hind)4] ([2]). When the pH-dependent solution behavior of [3]Cl2·H2O and [4]Cl2·H2O was studied, two new complexes with two deprotonated indazole ligands were isolated, namely [RuCl(ind)2(Hind)2(NO)] ([5]) and [RuOH(ind)2(Hind)2(NO)] ([6]). All prepared compounds were comprehensively characterized by spectroscopic (IR, UV-vis, 1H NMR) techniques. Compound [2], as well as [3]Cl2·2(CH3)2CO, [4]Cl2·2(CH3)2CO, and [5]·0.8CH2Cl2, the latter three obtained by recrystallization of the first isolated compounds (hydrates or anhydrous species) from acetone and dichloromethane, respectively, were studied by X-ray diffraction methods. The photoinduced release of NO in [3]Cl2 and [4]Cl2 was investigated by cyclic voltammetry and resulting paramagnetic NO species were detected by EPR spectroscopy. The quantum yields of NO release were calculated and found to be low (3-6%), which could be explained by NO dissociation and recombination dynamics, assessed by femtosecond pump-probe spectroscopy. The geometry and electronic parameters of Ru species formed upon NO release were identified by DFT calculations. The complexes [3]Cl2 and [4]Cl2 showed considerable antiproliferative activity in human cancer cell lines with IC50 values in low micromolar or submicromolar concentration range and are suitable for further development as potential anticancer drugs. p53-dependence of Ru-NO complexes [3]Cl2 and [4]Cl2 was studied and p53-independent mode of action was confirmed. The effects of NO release on the cytotoxicity of the complexes with or without light irradiation were investigated using NO scavenger carboxy-PTIO.


Asunto(s)
Indazoles/química , Óxido Nítrico/química , Óxidos de Nitrógeno , Compuestos Organometálicos , Rutenio , Antineoplásicos/química , Antineoplásicos/farmacología , Western Blotting , Supervivencia Celular , Cisplatino/farmacología , Estabilidad de Medicamentos , Electroquímica , Células HCT116 , Humanos , Concentración 50 Inhibidora , Ligandos , Modelos Moleculares , Óxidos de Nitrógeno/química , Óxidos de Nitrógeno/farmacología , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Teoría Cuántica , Rutenio/química , Rutenio/farmacología , Agua/química , Difracción de Rayos X
12.
Angew Chem Int Ed Engl ; 57(1): 277-281, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29119650

RESUMEN

The endohedral fullerene Y3 N@C80 exhibits luminescence with reasonable quantum yield and extraordinary long lifetime. By variable-temperature steady-state and time-resolved luminescence spectroscopy, it is demonstrated that above 60 K the Y3 N@C80 exhibits thermally activated delayed fluorescence with maximum emission at 120 K and a negligible prompt fluorescence. Below 60 K, a phosphorescence with a lifetime of 192±1 ms is observed. Spin distribution and dynamics in the triplet excited state is investigated with X- and W-band EPR and ENDOR spectroscopies and DFT computations. Finally, electroluminescence of the Y3 N@C80 /PFO film is demonstrated opening the possibility for red-emitting fullerene-based organic light-emitting diodes (OLEDs).

13.
Angew Chem Int Ed Engl ; 56(45): 14306-14309, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-28857401

RESUMEN

Star-shaped polymers represent highly desired materials in nanotechnology and life sciences, including biomedical applications (e.g., diagnostic imaging, tissue engineering, and targeted drug delivery). Herein, we report a straightforward synthesis of wavelength-selective multifunctional photoinitiators (PIs) that contain a bisacylphosphane oxide (BAPO) group and an α-hydroxy ketone moiety within one molecule. By using three different wavelengths, these photoactive groups can be selectively addressed and activated, thereby allowing the synthesis of ABC-type miktoarm star polymers through a simple, highly selective, and robust free-radical polymerization method. The photochemistry of these new initiators and the feasibility of this concept were investigated in unprecedented detail by using various spectroscopic techniques.

14.
Phys Chem Chem Phys ; 18(36): 25120-25135, 2016 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-27711532

RESUMEN

The four Mn(ii) complexes Mn-DOTA, Mn-TAHA, Mn-PyMTA, and Mn-NO3Py were characterized by electron paramagnetic resonance (EPR), electron-nuclear double resonance (ENDOR), and relaxation measurements, to predict their relative performance in the EPR pulse dipolar spectroscopy (PDS) experiments. High spin density localization on the metal ions was proven by ENDOR on 1H, D, 14N, and 55Mn nuclei. The transverse relaxation of the Mn(ii) complexes appears to be slow enough for PDS-based spin-spin distance determination. Rather advantageous ratios of T1/Tm were measured allowing for good relaxation induced dipolar modulation enhancement (RIDME) performance and, in general, fast shot repetitions in any PDS experiment. Relaxation properties of the Mn(ii) complexes correlate with the strengths of their zero field splitting (ZFS). Further, a comparison of Mn(ii)-DOTA and Gd(iii)-DOTA based spin labels is presented. The RIDME technique to measure nanometer-range Mn(ii)-Mn(ii) distances in biomolecules is discussed as an alternative to the well-known DEER technique that often appears challenging in cases of metal-metal distance measurements. The use of a modified kernel function that includes dipolar harmonic overtones allows model-free computation of the Mn(ii)-Mn(ii) distance distributions. Mn(ii)-Mn(ii) distances are computed from RIDME data of Mn-rulers consisting of two Mn-PyMTA complexes connected by a rodlike spacer of defined length. Level crossing effects seem to have only a weak influence on the distance distributions computed from this set of Mn(ii)-Mn(ii) RIDME data.

15.
Chemistry ; 21(16): 6215-25, 2015 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-25765373

RESUMEN

A variety of asymmetrically donor-acceptor-substituted [3]cumulenes (buta-1,2,3-trienes) were synthesized by developed procedures. The activation barriers to rotation ΔG(≠) were measured by variable temperature NMR spectroscopy and found to be as low as 11.8 kcal mol(-1) , in the range of the barriers for rotation around sterically hindered single bonds. The central C=C bond of the push-pull-substituted [3]cumulene moiety is shortened down to 1.22 Šas measured by X-ray crystallography, leading to a substantial bond length alternation (BLA) of up to 0.17 Å. All the experimental results are supported by DFT calculations. Zwitterionic transition states (TS) of bond rotation confirm the postulated proacetylenic character of donor-acceptor [3]cumulenes. Additional support for the proacetylenic character of these chromophores is provided by their reaction with tetracyanoethene (TCNE) in a cycloaddition-retroelectrocyclization (CA-RE) cascade characteristic of donor-polarized acetylenes.

16.
Analyst ; 140(21): 7209-16, 2015 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-26359514

RESUMEN

The most abundant isomer of C70(CF3)10 (70-10-1) is a rare example of a perfluoroalkylated fullerene exhibiting electrochemically irreversible reduction. We show that electrochemical reversibility at the first reduction step is achieved at scan rates higher than 500 V s(-1). Applying ESR-, vis-NIR-, and (19)F NMR-spectroelectrochemistry, as well as mass spectrometry and DFT calculations, we show that the (70-10-1)(-) radical monoanion is in equilibrium with a singly-bonded diamagnetic dimeric dianion. This study is the first example of (19)F NMR spectroelectrochemistry, which promises to be an important method for the elucidation of redox mechanisms of fluoroorganic compounds. Additionally, we demonstrate the importance of combining different spectroelectrochemical methods and quantitative analysis of the transferred charge and spin numbers in the determination of the redox mechanism.

17.
Macromol Rapid Commun ; 36(6): 553-7, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25651079

RESUMEN

The sodium salt of the new bis(mesitoyl)phosphinic acid (BAPO-OH) can be prepared in a very efficient one-pot synthesis. It is well soluble in water and hydrolytically stable for at least several weeks. Remarkably, it acts as an initiating agent for the surfactant-free emulsion polymerization (SFEP) of styrene to yield monodisperse, spherical nanoparticles. Time-resolved electron paramagnetic resonance (TR-EPR) and chemically induced electron polarisation (CIDEP) indicate preliminary mechanistic insights.


Asunto(s)
Óxidos/química , Fosfinas/química , Polímeros/síntesis química , Tensoactivos/química , Emulsiones/química , Polimerizacion , Polímeros/química
18.
J Am Chem Soc ; 136(37): 13045-52, 2014 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-25154039

RESUMEN

We present the synthesis and characterization of enantiomerically pure [6]helicene o-quinones (P)-(+)-1 and (M)-(-)-1 and their application to chiroptical switching and chiral recognition. (P)-(+)-1 and (M)-(-)-1 each show a reversible one-electron reduction process in their cyclic voltammogram, which leads to the formation of the semiquinone radical anions (P)-(+)-1(•-) and (M)-(-)-1(•-), respectively. Spectroelectrochemical ECD measurements give evidence of the reversible switching between the two redox states, which is associated with large differences of the Cotton effects [Δ(Δε)] in the UV and visible regions. The reduction of (±)-1 by lithium metal provides [Li(+){(±)-1(•-)}], which was studied by EPR and ENDOR spectroscopy to reveal substantial delocalization of the spin density over the helicene backbone. DFT calculations demonstrate that the lithium hyperfine coupling A((7)Li) in [Li(+){(±)-1(•-)}] is very sensitive to the position of the lithium cation. On the basis of this observation, chiral recognition by ENDOR spectroscopy was achieved by complexation of [Li(+){(P)-(+)-1(•-)}] and [Li(+){(M)-(-)-1(•-)}] with an enantiomerically pure phosphine oxide ligand.

19.
Chemistry ; 20(5): 1279-86, 2014 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-24458911

RESUMEN

Series of homoconjugated push-pull chromophores and donor-acceptor (D-A)-functionalized spiro compounds were synthesized, in which the electron-donating strength of the anilino donor groups was systematically varied. The structural and optoelectronic properties of the compounds were investigated by X-ray analysis, UV/Vis spectroscopy, electrochemistry, and computational analysis. The homoconjugated push-pull chromophores with a central bicyclo[4.2.0]octane scaffold were obtained in high yield by [2+2] cycloaddition of 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) to N,N-dialkylanilino- or N,N-diarylanilino-substituted activated alkynes. The spirocyclic compounds were formed by thermal rearrangement of the homoconjugated adducts. They also can be prepared in a one-pot reaction starting from DDQ and anilino-substituted alkynes. Spiro products with N,N-diphenylanilino and N,N-diisopropylanilino groups were isolated in high yields whereas compounds with pyrrolidino, didodecylamino, and dimethylamino substituents gave poor yields, with formation of insoluble side products. It was shown by in situ trapping experiments with TCNE that cycloreversion is possible during the thermal rearrangement, thereby liberating DDQ. In the low-yielding transformations, DDQ oxidizes the anilino species present, presumably via an intermediate iminium ion pathway. Such a pathway is not available for the N,N-diphenylanilino derivative and, in the case of the N,N-diisopropylanilino derivative, would generate a strained iminium ion (A1,3 strain). The mechanism of the thermal rearrangement was investigated by EPR spectroscopy, which provides good evidence for a proposed biradical pathway starting with the homolytic cleavage of the most strained (CN)C-C(CN) bond between the fused four- and six-membered rings in the homoconjugated adducts.

20.
JACS Au ; 4(3): 1166-1183, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38559722

RESUMEN

Cobalt complexes with multiproton- and multielectron-responsive ligands are of interest for challenging catalytic transformations. The chemical and redox noninnocence of pentane-2,4-dione bis(S-methylisothiosemicarbazone) (PBIT) in a series of cobalt complexes has been studied by a range of methods, including spectroscopy [UV-vis, NMR, electron paramagnetic resonance (EPR), X-ray absorption spectroscopy (XAS)], cyclic voltammetry, X-ray diffraction, and density functional theory (DFT) calculations. Two complexes [CoIII(H2LSMe)I]I and [CoIII(LSMe)I2] were found to act as precatalysts in a Wacker-type oxidation of olefins using phenylsilane, the role of which was elucidated through isotopic labeling. Insights into the mechanism of the catalytic transformation as well as the substrate scope of this selective reaction are described, and the essential role of phenylsilane and the noninnocence of PBIT are disclosed. Among the several relevant species characterized was an unprecedented Co(III) complex with a dianionic diradical PBIT ligand ([CoIII(LSMe••)I]).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA