Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Oecologia ; 104(1): 72-78, 1995 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28306915

RESUMEN

Results from laboratory feeding experiments have shown that elevated atmospheric carbon dioxide can affect interactions between plants and insect herbivores, primarily through changes in leaf nutritional quality occurring at elevated CO2. Very few data are available on insect herbivory in plant communities where insects can choose among species and positions in the canopy in which to feed. Our objectives were to determine the extent to which CO2-induced changes in plant communities and leaf nutritional quality may affect herbivory at the level of the entire canopy. We introduced equivalent populations of fourth instar Spodoptera eridania, a lepidopteran generalist, to complex model ecosystems containing seven species of moist tropical plants maintained under low mineral nutrient supply. Larvae were allowed to feed freely for 14 days, by which time they had reached the seventh instar. Prior to larval introductions, plant communities had been continuously exposed to either 340 µl CO2 l-1 or to 610 µl CO2 l-1 for 1.5 years. No major shifts in leaf nutritional quality [concentrations of N, total non-structural carbohydrates (TNC), sugar, and starch; ratios of: C/N, TNC/N, sugar/N, starch/N; leaf toughness] were observed between CO2 treatments for any of the species. Furthermore, no correlations were observed between these measures of leaf quality and leaf biomass consumption. Total leaf area and biomass of all plant communities were similar when caterpillars were introduced. However, leaf biomass of some species was slightly greater-and for other species slightly less (e.g. Cecropia peltata)-in communities exposed to elevated CO2. Larvae showed the strongest preference for C. peltata leaves, the plant species that was least abundant in all communites, and fed relatively little on plants species which were more abundant. Thus, our results indicate that leaf tissue quality, as described by these parameters, is not necessarily affected by elevated CO2 under relatively low nutrient conditions. Hence, the potential importance of CO2-induced shifts in leaf nutritional quality, as determinants of herbivory, may be overestimated for many plant communities growing on nutrient-poor sites if estimates are based on traditional laboratory feeding studies. Finally, slight shifts in the abundance of leaf tissue of various species occurring under elevated CO2 will probably not significantly affect herbivory by generalist insects. However, generalist insect herbivores appear to become more dependent on less-preferred plant species in cases where elevated CO2 results in reduced availability of leaves of a favoured plant species, and this greater dependency may eventually affect insect populations adversely.

2.
J Photochem Photobiol B ; 62(1-2): 67-77, 2001 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-11693368

RESUMEN

The southern part of Tierra del Fuego, in the southernmost tip of South America, is covered by dense Nothofagus spp. forests and Sphagnum-dominated peat bogs, which are subjected to the influence of ozone depletion and to increased levels of solar ultraviolet-B radiation (UV-B). Over the last 5 years we have studied some of the biological impacts of solar UV-B on natural ecosystems of this region. We have addressed two general problems: (i) do the fluctuations in UV-B levels under the influence of the Antarctic ozone 'hole' have any measurable biological impact, and (ii) what are the long-term effects of solar (ambient) UV-B on the Tierra del Fuego ecosystems? In this paper, we provide an overview of the progress made during the first 4 years of the project. We highlight and discuss the following results: (1) ambient UV-B has subtle but significant inhibitory effects on the growth of herbaceous and graminoid species of this region (growth reduction < or = 12%), whereas no consistent inhibitory effects could be detected in woody perennials; (2) in the species investigated in greatest detail, Gunnera magellanica, the inhibitory effect of solar UV-B is accompanied by increased levels of DNA damage in leaf tissue, and the DNA damage density in the early spring is clearly correlated with the dose of weighted UV-B measured at ground level; (3) the herbaceous species investigated thus far show little or no acclimation responses to ambient UV-B such as increased sunscreen levels and DNA repair capacity; and (4) ambient UV-B has significant effects on heterotrophic organisms, included marked inhibitory effects on insect herbivory. The results from the experiments summarized in this review clearly indicate that UV-B influences several potentially important processes and ecological interactions in the terrestrial ecosystems of Tierra del Fuego.


Asunto(s)
Ecosistema , Luz Solar , Rayos Ultravioleta , Animales , Argentina , Clorofila/efectos de la radiación , Plantas/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA