Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 59(2): 1444-1452, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31910003

RESUMEN

Cationic and anionic frameworks of La5.4MoO11.1 proton conductors have been modified by means of metal (Ti4+, Zr4+, and Nb5+) and fluorine (F-) doping. This synergic effect leads to the stabilization of high-symmetry and single-phase polymorphs. The materials have been fully characterized by structural techniques, such as X-ray and neutron powder diffraction and transmission electron microscopy. The fluorine content was determined by ion chromatography. Impedance spectroscopy analysis under different atmospheres (dry and wet N2 and O2 and wet 5% H2-Ar) showed an improvement in the electronic conductivity under reducing conditions, making these materials potential candidates for hydrogen separation membranes.

2.
Inorg Chem ; 58(14): 9368-9377, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31247821

RESUMEN

La-doped CeO2 materials have been widely investigated for potential applications in different high-temperature electrochemical devices, such as fuel cells and ceramic membranes for hydrogen production. However, the crystal structure is still controversial, and different models based on fluorite, pyrochlore, and/or type-C structures have been considered, depending on the lanthanum content and synthesis method used. In this work, an exhaustive structural analysis of the Ce1-xLaxO2-x/2 system (0.2 < x ≤ 0.7) is performed with different techniques. The average crystal structure, studied by conventional X-ray diffraction, could be considered to be a disordered fluorite; however, the local structure, examined by electron diffraction and Raman spectroscopy, reveals a biphasic mixture of fluorite and C-type phases. The thermal and electrical properties demonstrate that the materials with x ≥ 0.4 are oxide ion proton conductors in an oxidizing atmosphere and mixed ionic electronic conductors in a reducing atmosphere. The water uptake and proton conductivity increase gradually with the increase in La content, suggesting that the formation of the C-type phase is responsible for the proton conduction in these materials.

3.
ACS Appl Mater Interfaces ; 16(1): 555-568, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38145419

RESUMEN

Symmetrical solid oxide cells (SSOCs) have recently gained significant attention for their potential in energy conversion due to their simplified cell configuration, cost-effectiveness, and excellent reversibility. However, previous research efforts have mainly focused on improving the electrode performance of perovskite-type electrodes through different doping strategies, neglecting microstructural optimization. This work presents novel approaches for the nanostructural tailoring of (La0.8Sr0.2)0.95Fe1-xTixO3-δ (LSFTx, x = 0.2 and 0.4) electrodes using a single-step spray-pyrolysis deposition process. By incorporating these electrodes into a Ce0.9Gd0.1O1.95 (CGO) porous backbone or employing a nanocomposite architecture with nanoscale particle size, we achieved significant improvements in the polarization resistance (Rp) compared with traditional screen-printed electrodes. To further boost the fuel oxidation performance, a Ni-doping strategy, coupled with meticulous microstructural optimization, was implemented. The exsolution of Ni nanoparticles under reducing conditions resulted in remarkable Rp values as low as 0.34 and 0.11 Ω cm2 in air and wet H2 at 700 °C, respectively. Moreover, an electrolyte-supported cell with symmetrical electrodes demonstrated a stable maximum power density of 617 mW cm-2 at 800 °C. These findings highlight the importance of combining electrode composition optimization with advanced morphology control in the design of highly efficient and durable SSOCs.

4.
Materials (Basel) ; 17(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38541569

RESUMEN

This study explores the optical and electrochemical properties of a ZnO coating layer deposited on a nanoporous alumina structure (NPAS) for potential multifunctional applications. The NPAS, synthesized through an electrochemical anodization process, displays well-defined nanochannels with a high aspect ratio (~3000). The ZnO coating, achieved via atomic layer deposition, enables the tuning of the pore diameter and porosity of the NPAS, thereby influencing both the optical and electrochemical interfacial properties. A comprehensive characterization using photoluminescence, spectroscopy ellipsometry and impedance spectroscopy (with the sample in contact with NaCl solutions) provides insights into optical and electrochemical parameters, including the refractive index, absorption coefficient, and electrolyte-ZnO/NPAS interface processes. This research demonstrates potential for tailoring the optical and interfacial properties of nanoporous structures by selecting appropriate coating materials, thus opening avenues for their utilization in various technological applications.

5.
Polymers (Basel) ; 15(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37299327

RESUMEN

This study investigates the effects of modifying commercial Nafion-212 thin films with dodecyltriethylammonium cation (DTA+) on their electrical resistance, elastic modulus, light transmission/reflection and photoluminescence properties. The films were modified through a proton/cation exchange process for immersion periods ranging from 1 to 40 h. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were employed to analyze the crystal structure and surface composition of the modified films. The electrical resistance and the different resistive contributions were determined via impedance spectroscopy. Changes in the elastic modulus were evaluated using stress-strain curves. Additionally, optical characterization tests, including light/reflection (250-2000 nm) and photoluminescence spectra, were also performed on both unmodified and DTA+-modified Nafion films. The results reveal significant changes in the electrical, mechanical and optical properties of the films, depending on the exchange process time. In particular, the inclusion of the DTA+ into the Nafion structure improved the elastic behavior of the films by significantly decreasing the Young modulus. Furthermore, the photoluminescence of the Nafion films was also enhanced. These findings can be used to optimize the exchange process time to achieve specific desired properties.

6.
Nanomaterials (Basel) ; 12(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36432222

RESUMEN

Large variations in the polarization resistance of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathodes are reported in the literature, which are usually related to different preparation methods, sintering temperatures, and resulting microstructures. However, the influence of the electrolyte on the electrochemical activity and the rate-limiting steps of LSCF remains unclear. In this work, LSCF nanostructured electrodes with identical microstructure are prepared by spray-pyrolysis deposition onto different electrolytes: Zr0.84Y0.16O1.92 (YSZ), Ce0.9Gd0.1O1.95 (CGO), La0.9Sr0.1Ga0.8Mg0.2O2.85 (LSGM), and Bi1.5Y0.5O3-δ (BYO). The ionic conductivity of the electrolyte has a great influence on the electrochemical performance of LSCF due to the improved oxide ion transport at the electrode/electrolyte interface, as well as the extended ionic conduction paths for the electrochemical reactions on the electrode surface. In this way, the polarization resistance of LSCF decreases as the ionic conductivity of the electrolyte increases in the following order: YSZ > LSGM > CGO > BYO, with values ranging from 0.21 Ω cm2 for YSZ to 0.058 Ω cm2 for BYO at 700 °C. In addition, we demonstrate by distribution of relaxation times and equivalent circuit models that the same rate-limiting steps for the ORR occur regardless of the electrolyte. Furthermore, the influence of the current collector material on the electrochemical performance of LSCF electrodes is also analyzed.

7.
ACS Appl Energy Mater ; 5(4): 4536-4546, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-36186956

RESUMEN

La0.98Cr0.75Mn0.25O3-δ-Ce0.9Gd0.1O1.95 (LCM-CGO) nanocomposite layers with different LCM contents, between 40 and 60 wt %, are prepared in a single step by a spray-pyrolysis deposition method and evaluated as both air and fuel electrodes for solid oxide fuel cells (SOFCs). The formation of fluorite (CGO) and perovskite (LCM) phases in the nanocomposite electrode is confirmed by different structural and microstructural techniques. The intimate mixture of LCM and CGO phases inhibits the grain growth, retaining the nanoscale microstructure even after annealing at 1000 °C with a grain size lower than 50 nm for LCM-CGO compared to 200 nm for pure LCM. The synergetic effect of nanosized LCM and CGO by combining their high electronic and ionic conductivity, respectively, leads to efficient and durable symmetrical electrodes. The best electrochemical properties are found for 50 wt % LCM-CGO, showing polarization resistance values of 0.29 and 0.09 Ω cm2 at 750 °C in air and H2, respectively, compared to 2.05 and 1.9 Ω cm2 for a screen-printed electrode with the same composition. This outstanding performance is mainly ascribed to the nanoscale electrode microstructure formed directly on the electrolyte at a relatively low temperature. These results reveal that the combination of different immiscible phases with different crystal structures and electrochemical properties could be a promising strategy to design highly efficient and durable air and fuel electrodes for SOFCs.

8.
Nanomaterials (Basel) ; 10(6)2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32486171

RESUMEN

Lowering the operating temperature of solid oxide fuel cells (SOFCs) is crucial to make this technology commercially viable. In this context, the electrode efficiency at low temperatures could be greatly enhanced by microstructural design at the nanoscale. This work describes alternative microstructural approaches to improve the electrochemical efficiency of the BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY) cathode. Different electrodes architectures are prepared in a single step by a cost-effective and scalable spray-pyrolysis deposition method. The microstructure and electrochemical efficiency are compared with those fabricated from ceramic powders and screen-printing technique. A complete structural, morphological and electrochemical characterization of the electrodes is carried out. Reduced values of area specific resistance are achieved for the nanostructured cathodes, i.e., 0.067 Ω·cm2 at 600 °C, compared to 0.520 Ω·cm2 for the same cathode obtained by screen-printing. An anode supported cell with nanostructured BCFZY cathode generates a peak power density of 1 W·cm-2 at 600 °C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA