Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38928361

RESUMEN

Migraine is a common and debilitating neurological disorder characterized by the recurrent attack of pulsating headaches typically localized on one side of the head associated with other disabling symptoms, such as nausea, increased sensitivity to light, sound and smell and mood changes. Various clinical factors, including the excessive use of migraine medication, inadequate acute treatment and stressful events, can contribute to the worsening of the condition, which may evolve to chronic migraine, that is, a headache present on >15 days/month for at least 3 months. Chronic migraine is frequently associated with various comorbidities, including anxiety and mood disorders, particularly depression, which complicate the prognosis, response to treatment and overall clinical outcomes. Emerging research indicates a connection between alterations in the composition of the gut microbiota and mental health conditions, particularly anxiety and depression, which are considered disorders of the gut-brain axis. This underscores the potential of modulating the gut microbiota as a new avenue for managing these conditions. In this context, it is interesting to investigate whether migraine, particularly in its chronic form, exhibits a dysbiosis profile similar to that observed in individuals with anxiety and depression. This could pave the way for interventions aimed at modulating the gut microbiota for treating difficult-to-manage migraines.


Asunto(s)
Microbioma Gastrointestinal , Trastornos Migrañosos , Humanos , Trastornos Migrañosos/microbiología , Trastornos Migrañosos/terapia , Trastornos Migrañosos/psicología , Eje Cerebro-Intestino , Ansiedad/microbiología , Depresión/microbiología , Disbiosis/microbiología , Animales
2.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37373250

RESUMEN

Increased anandamide levels via fatty acid amide hydrolase (FAAH) inhibition can decrease the pronociceptive responses and inflammatory mediators in animal models of migraine. Here, we profile the pharmacological activity of the FAAH inhibitor JZP327A, a chiral 1,3,4-oxadiazol-2(3H)-one compound, in the mediation of spontaneous and nocifensive behaviour in the animal models of migraine based on nitroglycerin (NTG) administration. JZP327A (0.5 mg/kg, i.p.) or vehicle was administered to male rats 3 h after NTG (10 mg/kg, i.p.) or NTG vehicle injection. The rats were then exposed to the open field test and an orofacial formalin test 1 h later. The levels of endocannabinoids and lipid-related substances, and the expression of pain and inflammatory mediators were evaluated in cranial tissues and serum. The findings show that JZP327A did not affect NTG-induced changes in the spontaneous behaviour of rats, while it inhibited NTG-induced hyperalgesia at the orofacial formalin test. Furthermore, JZP327A dramatically decreased the gene expression of calcitonin gene-related peptide (CGRP), tumor necrosis factor alpha (TNF-alpha) and interleukin 6 (IL-6) in the trigeminal ganglia and medulla-pons, while it did not change endocannabinoids or lipids levels nor CGRP serum levels in the same tissues. These data suggest an anti-hyperalgesic role for JZP327A in the NTG model, which is mediated by the inhibition of the inflammatory cascade of events. This activity does not seem mediated by a change in the levels of endocannabinoids and lipid amides.


Asunto(s)
Endocannabinoides , Trastornos Migrañosos , Animales , Masculino , Ratas , Péptido Relacionado con Gen de Calcitonina/metabolismo , Modelos Animales de Enfermedad , Hiperalgesia/metabolismo , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/metabolismo , Nitroglicerina/efectos adversos , Ratas Sprague-Dawley
3.
Int J Mol Sci ; 24(6)2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36982872

RESUMEN

The identification of novel targets to modulate the immune response triggered by cerebral ischemia is crucial to promote the development of effective stroke therapeutics. Since tumour necrosis factor (TNF)-α-stimulated gene 6 (TSG-6), a hyaluronate (HA)-binding protein, is involved in the regulation of immune and stromal cell functions in acute neurodegeneration, we aimed to characterize its involvement in ischemic stroke. Transient middle cerebral artery occlusion (1 h MCAo, followed by 6 to 48 of reperfusion) in mice resulted in a significant elevation in cerebral TSG-6 protein levels, mainly localized in neurons and myeloid cells of the lesioned hemisphere. These myeloid cells were clearly infiltrating from the blood, strongly suggesting that brain ischemia also affects TSG-6 in the periphery. Accordingly, TSG-6 mRNA expression was elevated in peripheral blood mononuclear cells (PBMCs) from patients 48 h after ischemic stroke onset, and TSG-6 protein expression was higher in the plasma of mice subjected to 1 h MCAo followed by 48 h of reperfusion. Surprisingly, plasma TSG-6 levels were reduced in the acute phase (i.e., within 24 h of reperfusion) when compared to sham-operated mice, supporting the hypothesis of a detrimental role of TSG-6 in the early reperfusion stage. Accordingly, systemic acute administration of recombinant mouse TSG-6 increased brain levels of the M2 marker Ym1, providing a significant reduction in the brain infarct volume and general neurological deficits in mice subjected to transient MCAo. These findings suggest a pivotal role of TSG-6 in ischemic stroke pathobiology and underscore the clinical relevance of further investigating the mechanisms underlying its immunoregulatory role.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Daño por Reperfusión , Animales , Ratones , Isquemia Encefálica/metabolismo , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media/metabolismo , Leucocitos Mononucleares/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
4.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36982428

RESUMEN

In recent years, numerous efforts have been made to identify reliable biomarkers useful in migraine diagnosis and progression or associated with the response to a specific treatment. The purpose of this review is to summarize the alleged diagnostic and therapeutic migraine biomarkers found in biofluids and to discuss their role in the pathogenesis of the disease. We included the most informative data from clinical or preclinical studies, with a particular emphasis on calcitonin gene-related peptide (CGRP), cytokines, endocannabinoids, and other biomolecules, the majority of which are related to the inflammatory aspects and mechanisms of migraine, as well as other actors that play a role in the disease. The potential issues affecting biomarker analysis are also discussed, such as how to deal with bias and confounding data. CGRP and other biological factors associated with the trigeminovascular system may offer intriguing and novel precision medicine opportunities, although the biological stability of the samples used, as well as the effects of the confounding role of age, gender, diet, and metabolic factors should be considered.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Trastornos Migrañosos , Humanos , Péptido Relacionado con Gen de Calcitonina/metabolismo , Trastornos Migrañosos/tratamiento farmacológico , Biomarcadores , Citocinas/uso terapéutico , Medicina de Precisión
5.
J Headache Pain ; 24(1): 48, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37138206

RESUMEN

Cannabidiol (CBD) is the main pharmacologically active phytocannabinoid. CBD exerts an analgesic effect in several pain models, does not have side effects and has low toxicity. The data about CBD mechanisms of action in pain and its therapeutic potential in this area are limited. Here, we tested CBD effects in animal models specific for migraine. We assayed CBD distribution in plasma and in cranial areas related to migraine pain in male Sprague Dawley rats treated chronically (5 days). Successively, we tested CBD activity on the behavioral and biochemical effects induced in the acute and the chronic migraine animal models by nitroglycerin (NTG) administration. In the acute migraine model, rats received CBD (15 mg or 30 mg/kg, i.p) 3 h after NTG (10 mg/kg i.p.) or vehicle injection. In the chronic migraine model, rats were treated with CBD and NTG every other day over nine days with the following doses: CBD 30 mg/kg i.p., NTG 10 mg/kg i.p. We evaluated behavioral parameters with the open field and the orofacial formalin tests. We explored the fatty acid amide hydrolase gene expression, cytokines mRNA and protein levels in selected brain areas and CGRP serum level. CBD levels in the meninges, trigeminal ganglia, cervical spinal cord, medulla pons, and plasma were higher 1 h after the last treatment than after 24 h, suggesting that CBD penetrates but does not accumulate in these tissues. In the acute model, CBD significantly reduced NTG-induced trigeminal hyperalgesia and CGRP and cytokine mRNA levels in peripheral and central sites. In the chronic model, CBD caused a significant decrease in NTG-induced IL-6 protein levels in the medulla-pons, and trigeminal ganglion. It also reduced CGRP serum levels. By contrast, CBD did not modulate TNF-alpha protein levels and fatty acid amide hydrolase (FAAH) gene expression in any of investigated areas. In both experimental conditions, there was no modulation of anxiety, motor/exploratory behavior, or grooming. These findings show that CBD reaches brain areas involved in migraine pain after systemic administration. They also show for the first time that CBD modulates migraine-related nociceptive transmission, likely via a complex signaling mechanism involving different pathways.


Asunto(s)
Cannabidiol , Trastornos Migrañosos , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Cannabidiol/efectos adversos , Péptido Relacionado con Gen de Calcitonina/metabolismo , Dolor , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Nitroglicerina/efectos adversos , Trastornos Migrañosos/inducido químicamente , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/metabolismo , Modelos Animales de Enfermedad
6.
Headache ; 62(3): 227-240, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35179780

RESUMEN

BACKGROUND: Migraine is a complex and highly disabling neurological disease whose treatment remains challenging in many patients, even after the recent advent of the first specific-preventive drugs, namely monoclonal antibodies that target calcitonin gene-related peptide. For this reason, headache researchers are actively searching for new therapeutic targets. Cannabis has been proposed for migraine treatment, but controlled clinical studies are lacking. A major advance in cannabinoid research has been the discovery of the endocannabinoid system (ECS), which consists of receptors CB1 and CB2; their endogenous ligands, such as N-arachidonoylethanolamine; and the enzymes that catalyze endocannabinoid biosynthesis or degradation. Preclinical and clinical findings suggest a possible role for endocannabinoids and related lipids, such as palmitoylethanolamide (PEA), in migraine-related pain treatment. In animal models of migraine-related pain, endocannabinoid tone modulation via inhibition of endocannabinoid-catabolizing enzymes has been a particular focus of research. METHODS: To conduct a narrative review of available data on the possible effects of cannabis, endocannabinoids, and other lipids in migraine-related pain, relevant key words were used to search the PubMed/MEDLINE database for basic and clinical studies. RESULTS: Endocannabinoids and PEA seem to reduce trigeminal nociception by interacting with many pathways associated with migraine, suggesting a potential synergistic or similar effect. CONCLUSIONS: Modulation of the metabolic pathways of the ECS may be a basis for new migraine treatments. The multiplicity of options and the wealth of data already obtained in animal models underscore the importance of further advancing research in this area. Multiple molecules related to the ECS or to allosteric modulation of CB1 receptors have emerged as potential therapeutic targets in migraine-related pain. The complexity of the ECS calls for accurate biochemical and pharmacological characterization of any new compounds undergoing testing and development.


Asunto(s)
Cannabinoides , Trastornos Migrañosos , Analgésicos/uso terapéutico , Animales , Péptido Relacionado con Gen de Calcitonina , Cannabinoides/uso terapéutico , Endocannabinoides/metabolismo , Endocannabinoides/uso terapéutico , Humanos , Trastornos Migrañosos/tratamiento farmacológico , Dolor/tratamiento farmacológico , Dolor/etiología
7.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36430567

RESUMEN

Preclinical data point to the contribution of transient receptor potential ankyrin 1 (TRPA1) channels to the complex mechanisms underlying migraine pain. TRPA1 channels are expressed in primary sensory neurons, as well as in glial cells, and they can be activated/sensitized by inflammatory mediators. The aim of this study was to investigate the relationship between TRPA1 channels and glial activation in the modulation of trigeminal hyperalgesia in preclinical models of migraine based on acute and chronic nitroglycerin challenges. Rats were treated with ADM_12 (TRPA1 antagonist) and then underwent an orofacial formalin test to assess trigeminal hyperalgesia. mRNA levels of pro- and anti-inflammatory cytokines, calcitonin gene-related peptide (CGRP) and glia cell activation were evaluated in the Medulla oblongata and in the trigeminal ganglia. In the nitroglycerin-treated rats, ADM_12 showed an antihyperalgesic effect in both acute and chronic models, and it counteracted the changes in CGRP and cytokine gene expression. In the acute nitroglycerin model, ADM_12 reduced nitroglycerin-induced increase in microglial and astroglial activation in trigeminal nucleus caudalis area. In the chronic model, we detected a nitroglycerin-induced activation of satellite glial cells in the trigeminal ganglia that was inhibited by ADM_12. These findings show that TRPA1 antagonism reverts experimentally induced hyperalgesia in acute and chronic models of migraine and prevents multiple changes in inflammatory pathways by modulating glial activation.


Asunto(s)
Trastornos Migrañosos , Neuroglía , Canal Catiónico TRPA1 , Animales , Ratas , Péptido Relacionado con Gen de Calcitonina/metabolismo , Proteínas del Citoesqueleto/metabolismo , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Trastornos Migrañosos/inducido químicamente , Trastornos Migrañosos/metabolismo , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Nitroglicerina/efectos adversos , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores , Canales de Potencial de Receptor Transitorio/genética , Canal Catiónico TRPA1/antagonistas & inhibidores , Canal Catiónico TRPA1/genética
8.
J Headache Pain ; 23(1): 79, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35799128

RESUMEN

Targeting fatty acid amide hydrolase (FAAH) is a promising therapeutic strategy to combat certain forms of pain, including migraine headache. FAAH inhibitors, such as the O-biphenyl-3-yl carbamate URB597, have been shown to produce anti-hyperalgesic effects in animal models of migraine. The objective of this study was to investigate the behavioral and biochemical effects of compounds ARN14633 and ARN14280, two URB597 analogs with improved solubility and bioavailability, in a migraine-specific rat model in which trigeminal hyperalgesia is induced by nitroglycerin (NTG) administration. ARN14633 (1 mg/kg, i.p.) and ARN14280 (3 mg/kg, i.p.) were administered to adult male Sprague-Dawley rats 3 hours after NTG injection. One hour after the administration of either compound, rats were subjected to the orofacial formalin test. ARN14633 and ARN14280 attenuated NTG-induced nocifensive behavior and reduced transcription of genes encoding neuronal nitric oxide synthase, pain mediators peptides (calcitonin gene-related peptide, substance P) and pro-inflammatory cytokines (tumor necrosis factor-alpha, interleukin-1beta and 6) in the trigeminal ganglion, cervical spinal cord and medulla. Finally, both compounds strongly elevated levels of endocannabinoids and/or other FAAH substrates in cervical spinal cord and medulla, and, to a lesser extent, in the trigeminal ganglia. The results indicate that the novel global FAAH inhibitors ARN14633 and ARN14280 elicit significant anti-hyperalgesic effects in a migraine-specific animal model and inhibit the associated peptidergic-inflammatory response. Although the precise mechanism underlying these effects remains to be elucidated, our results support further investigational studies of FAAH blockade as a potential therapeutic strategy to treat migraine conditions.


Asunto(s)
Endocannabinoides , Trastornos Migrañosos , Amidas/efectos adversos , Amidohidrolasas/genética , Amidohidrolasas/uso terapéutico , Animales , Modelos Animales de Enfermedad , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Masculino , Trastornos Migrañosos/inducido químicamente , Trastornos Migrañosos/tratamiento farmacológico , Nitroglicerina/farmacología , Dolor , Ratas , Ratas Sprague-Dawley
9.
Cephalalgia ; 41(2): 185-196, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32967434

RESUMEN

BACKGROUND: Preclinical and clinical evidence suggests a role for the dysregulation of the endocannabinoid system in migraine pain, particularly in subjects with chronic migraine. METHODS: The gene expression of endocannabinoid system components was assayed in peripheral blood mononuclear cells of 25 subjects with episodic migraine, 26 subjects with chronic migraine with medication overuse (CM-MO) and 24 age-matched healthy controls. We also evaluated the protein expression of cannabinoid receptors 1 and 2 as well as DNA methylation changes in genes involved in endocannabinoid system components. RESULTS: Both episodic migraine and CM-MO subjects showed higher cannabinoid receptor 1 and cannabinoid receptor 2 gene and protein expression compared to controls. Fatty acid amide hydrolase gene expression, involved in anandamide degradation, was lower in migraine groups compared to healthy control subjects. N-arachidonoyl phosphatidylethanolamine phospholipase D gene expression was significantly higher in all migraineurs, as were monoacylglycerol lipase and diacylglycerol lipase gene expressions. The above markers significantly correlated with the number of migraine days and with the days of acute drug intake. CONCLUSION: The findings point to transcriptional changes in endocannabinoid system components occurring in migraineurs. These changes were detected peripherally, which make them amenable for a wider adoption to further investigate their role and applicability in the clinical field.clinicaltrials.gov NTC04324710.


Asunto(s)
Trastornos Migrañosos , Enfermedad Crónica , Endocannabinoides , Humanos , Leucocitos Mononucleares , Trastornos Migrañosos/genética , Proyectos Piloto , Receptores de Cannabinoides/genética
10.
BMC Vet Res ; 17(1): 15, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413406

RESUMEN

BACKGROUND: Chronic renin-angiotensin-aldosterone system (RAAS) activation in course of heart diseases contributes to cardiac remodeling and heart failure. Myxomatous mitral valve disease (MMVD) is characterized by different stages of severity and trend of RAAS activity during the course of the disease is still uncertain. The urinary aldosterone-to-creatinine ratio (UAldo:C) has been proven to reflect RAAS activation in dogs and might be a useful marker in monitoring therapy and disease progression, but data about this parameter need to be expanded. The objective of this study was to evaluate the UAldo:C in healthy dogs and dogs with naturally occurring MMVD, and to investigate the relationships between this parameter and clinical, echocardiographic and laboratory variables. RESULTS: The study population consisted of 149 dogs: 49 healthy and 100 MMVD dogs (45 stage B1, 13 stage B2 and 42 stage C). Urinary aldosterone-to-creatinine ratio was not significantly different among healthy and MMVD dogs of any stages. Breed, sex and age showed a significant impact on UAldo:C. In particular, Chihuahua and Cavalier King Charles spaniel showed significantly higher UAldo:C than other breeds, as well as intact females than other genders. In stage C dogs, UAldo:C appeared to be increased by spironolactone and was positively associated with furosemide dose (P = 0.024). Aldosterone breakthrough (ABT) appeared to occur in 36% (8/22) of stage C dogs not receiving spironolactone. A significant positive association between UAldo:C and left atrium-to-aortic root ratio (LA/Ao) was found. CONCLUSIONS: Individual factors such as breed, sex and age appeared to influence UAldo:C, and therapy seemed to add further variability. In the light of these results, comparing the UAldo:C of a single patient with a population-based reference value might lead to wrong interpretations and an individual monitoring should be considered. The prevalence of ABT in the present study (36%) was in line with those previously reported. However, due to the high individual variability of UAldo:C found in the study, even this result should be re-evaluated in the setting of an individual longitudinal approach. The positive association between UAldo:C and LA/Ao supports the mutual relationship between RAAS and cardiac remodeling.


Asunto(s)
Aldosterona/orina , Creatinina/orina , Enfermedades de los Perros/patología , Enfermedades de las Válvulas Cardíacas/veterinaria , Animales , Enfermedades de los Perros/tratamiento farmacológico , Perros , Femenino , Furosemida/administración & dosificación , Enfermedades de las Válvulas Cardíacas/orina , Masculino , Válvula Mitral/patología , Sistema Renina-Angiotensina , Espironolactona/administración & dosificación
11.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201498

RESUMEN

In ischemic stroke patients, a higher monocyte count is associated with disease severity and worse prognosis. The complex correlation between subset phenotypes and functions underscores the importance of clarifying the role of monocyte subpopulations. We examined the subtype-specific distribution of the CD163+ and CD80+ circulating monocytes and evaluated their association with the inflammatory status in 26 ischemic stroke patients and 16 healthy controls. An increased percentage of CD163+/CD16+ and CD163+/CD14++ events occurred 24 and 48 h after a stroke compared to the controls. CD163+ expression was more pronounced in CD16+ non-classical and intermediate monocytes, as compared to CD14+ classical subtype, 24 h after stroke. Conversely, the percentage of CD80+/CD16+ events was unaffected in patients; meanwhile, the percentage of CD80+/CD14+ events significantly increased only 24 h after stroke. Interleukin (IL)-1beta, TNF-alpha, and IL-4 mRNA levels were higher, while IL-10 mRNA levels were reduced in total monocytes from patients versus controls, at either 24 h or 48 h after stroke. The percentage of CD163+/CD16+ events 24 h after stroke was positively associated with NIHSS score and mRS at admission, suggesting that stroke severity and disability are relevant triggers for CD163+ expression in circulating CD16+ monocytes.


Asunto(s)
Antígenos CD/sangre , Antígenos de Diferenciación Mielomonocítica/sangre , Biomarcadores/sangre , Accidente Cerebrovascular Isquémico/sangre , Monocitos/metabolismo , Receptores de Superficie Celular/sangre , Anciano , Anciano de 80 o más Años , Antígeno B7-1/metabolismo , Biomarcadores/metabolismo , Estudios de Casos y Controles , Estudios Transversales , Citocinas/genética , Femenino , Proteínas Ligadas a GPI/metabolismo , Humanos , Accidente Cerebrovascular Isquémico/etiología , Masculino , Persona de Mediana Edad , Receptores de IgG/metabolismo , Índice de Severidad de la Enfermedad
12.
Neurobiol Dis ; 134: 104624, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31629892

RESUMEN

BACKGROUND: Fatty-acid amide hydrolase (FAAH) is an intracellular serine hydrolase that catalyzes the cleavage of endogenous fatty-acid amides, including the endocannabinoid anandamide (AEA). We previously reported that the peripherally restricted FAAH inhibitor URB937, which selectively increases AEA levels outside the central nervous system, reduces hyperalgesia and c-Fos expression in the trigeminal nucleus caudalis (TNC) and the locus coeruleus in an animal model of migraine based on nitroglycerin (NTG) administration. AIM: To further investigate the relevance of FAAH inhibition in the NTG animal model of migraine by testing the effects of the globally active FAAH inhibitor URB597. METHODS: Our experimental approach involved mapping neuronal c-Fos protein expression, measurement of AEA levels in brain areas and in trigeminal ganglia, evaluation of pain-related behavior and quantification of molecular mediators in rats that received URB597 (2 mg/kg i.p.) either before or after NTG administration (10 mg/kg, i.p.). RESULTS: Pre-treatment with URB597 significantly reduced c-Fos immunoreactivity in the TNC and inhibited NTG-induced hyperalgesia in the orofacial formalin test. This behavioral response was associated with a decrease in neuronal nitric oxide synthase, calcitonin gene-related peptide and cytokine gene expression levels in central and peripheral structures. Administration of URB597 after NTG had no such effect. CONCLUSIONS: The findings suggest that global FAAH inhibition may offer a therapeutic approach to the prevention, but not the abortive treatment, of migraine attacks. Further studies are needed to elucidate the exact cellular and molecular mechanisms underlying the protective effects of FAAH inhibition.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Benzamidas/farmacología , Carbamatos/farmacología , Trastornos Migrañosos/prevención & control , Núcleo Caudal del Trigémino/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Masculino , Trastornos Migrañosos/inducido químicamente , Trastornos Migrañosos/enzimología , Nitroglicerina/toxicidad , Ratas , Ratas Sprague-Dawley , Vasodilatadores/toxicidad
13.
Cephalalgia ; 40(12): 1336-1345, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32715736

RESUMEN

INTRODUCTION: Anti-calcitonin gene-related peptide antibodies proved effective in the preventive treatment of chronic migraine. In this open label study, we aim to assess the effects of erenumab administration on neurophysiological and biomolecular profiles in a representative cohort of chronic migraine patients. METHODS: Forty patients with a history of chronic migraine for at least 12 months prior to enrollment, and previous failure of at least two different preventive therapies, were enrolled. After a 1-month observation period (T0), patients were treated with erenumab 70 mg s.c. (every 28 days) for a total of three administrations. At week 12, they returned for the end-of-protocol visit (T3). At T0 and T3, patients underwent recording of clinical features, recording of single stimulus (RTh), temporal summation (TST) thresholds of the nociceptive withdrawal reflex, venous blood sampling for miR-382-5p, and miR-34a-5p quantification. RESULTS: At T3, 31 patients (77.5%) qualified as 30% Responders (reduction in monthly migraine days by at least 30% in the last 4-week observation period). RTh (T0: 15.4 ± 8.1 mA, T3: 19.7 ± 8.2 mA) as well as TST (T0: 11.2 ± 5.8 mA, T3: 13.4 ± 5.0 mA) significantly increased at T3 in 30% Responders (p = 0.001 for both), while we did not observe significant changes in NON-responder patients. MiR-382-5p and miR-34a-5p levels were significantly lower after erenumab administration in the overall study population (p = 0.015, and p = 0.001, respectively), without significant differences between 30% Responder and NON-responder groups. CONCLUSIONS: Different migraine phenotypes, characterized by different treatment susceptibility, may exist as suggested by the divergent behavior between neurophysiological and biomolecular findings in 30% Responder vs. NON-responder patients.The study protocol was registered at clinicaltrials.gov (NCT04361721).


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/uso terapéutico , Trastornos Migrañosos/tratamiento farmacológico , Umbral del Dolor/efectos de los fármacos , Adulto , Enfermedad Crónica , Femenino , Humanos , Masculino , MicroARNs/efectos de los fármacos , Persona de Mediana Edad , Resultado del Tratamiento
14.
J Headache Pain ; 21(1): 122, 2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33066724

RESUMEN

BACKGROUND: Migraine can manifest with an episodic or a chronic pattern in a continuum of disease severity. Multiple factors are associated with the progression of the pattern from episodic to chronic. One of the most consistently reported factors is the overuse of medications (MO) for the acute treatment of migraine attacks. The mechanisms through which MO facilitates the transformation of episodic migraine (EM) into chronic migraine (CM) are elusive. In order to provide insights into these mechanisms, the present study aims to identify possible peripheral biomarkers associated with the two forms of migraine, and with the presence of MO. METHODS: We evaluated the plasma levels of calcitonin gene-related peptide (CGRP) and the expression of miR-34a-5p and miR-382-5p in peripheral blood mononuclear cells of subjects with EM (n = 27) or CM-MO (n = 28). Subjects in the CM-MO group were also tested 2 months after an in-hospital detoxification protocol. RESULTS: CGRP, miR-382-5p, and miR-34a-5p levels were significantly higher in CM-MO subjects when compared to EM patients (p = 0.003 for all comparisons). After correcting for age, sex, and disease duration, miRNAs expression was still significantly associated with migraine phenotype (EM vs. CM-MO: p = 0.014 for miR-382-5p, p = 0.038 for miR-34a-5p), while CGRP levels were not (p = 0.115). CGRP plasma levels significantly and positively correlated with miR-382-5p (Spearman's rho: 0.491, p = 0.001) and miR-34a-5p (Spearman's rho: 0.303, p =0.025) in the overall population. In the CM-MO group, detoxification significantly decreased CGRP levels and miRNAs expression (p = 0.001). When comparing responders and non-responders to the detoxification, the former group (n = 23) showed significantly higher levels of CGRP at baseline, and significantly lower expression of miR-382-5p after the detoxification. CONCLUSIONS: Our findings identify a potential panel of peripheral markers associated with migraine subtypes and disease severity. CGRP levels as well as miRNAs expression were influenced by MO, and modulated by detoxification in subjects with CM-MO. TRIAL REGISTRATION: The study protocol was registered at www.clinicaltrials.gov ( NCT04473976 ).


Asunto(s)
MicroARNs , Trastornos Migrañosos , Biomarcadores , Calcitonina , Péptido Relacionado con Gen de Calcitonina , Humanos , Leucocitos Mononucleares , Trastornos Migrañosos/genética , Plasma
15.
J Neurosci Res ; 96(1): 151-159, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28609584

RESUMEN

Nitric oxide (NO) derived from endothelial NO synthase (eNOS) plays a role in preserving and maintaining the brain's microcirculation, inhibiting platelet aggregation, leukocyte adhesion, and migration. Inhibition of eNOS activity results in exacerbation of neuronal injury after ischemia by triggering diverse cellular mechanisms, including inflammatory responses. To examine the relative contribution of eNOS in stroke-induced neuroinflammation, we analyzed the effects of systemic treatment with l-N-(1-iminoethyl)ornithine (L-NIO), a relatively selective eNOS inhibitor, on the expression of MiR-155-5p, a key mediator of innate immunity regulation and endothelial dysfunction, in the cortex of male rats subjected to transient middle cerebral artery occlusion (tMCAo) followed by 24 hr of reperfusion. Inducible NO synthase (iNOS) and interleukin-10 (IL-10) mRNA expression were evaluated by real-time polymerase chain reaction in cortical homogenates and in resident and infiltrating immune cells isolated from ischemic cortex. These latter cells were also analyzed for their expression of CD40, a marker of M1 polarization of microglia/macrophages.tMCAo produced a significant elevation of miR155-5p and iNOS expression in the ischemic cortex as compared with sham surgery. eNOS inhibition by L-NIO treatment further elevated the cortical expression of these inflammatory mediators, while not affecting IL-10 mRNA levels. Interestingly, modulation of iNOS occurred in resident and infiltrating immune cells of the ischemic hemisphere. Accordingly, L-NIO induced a significant increase in the percentage of CD40+ events in CD68+ microglia/macrophages of the ischemic cortex as compared with vehicle-injected animals. These findings demonstrate that inflammatory responses may underlie the detrimental effects due to pharmacological inhibition of eNOS in cerebral ischemia.


Asunto(s)
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Mediadores de Inflamación/metabolismo , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo III/metabolismo , Daño por Reperfusión/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Isquemia Encefálica/patología , Inhibidores Enzimáticos/farmacología , Inflamación/metabolismo , Inflamación/patología , Masculino , Ornitina/análogos & derivados , Ornitina/farmacología , Ratas , Ratas Wistar , Daño por Reperfusión/patología
16.
Cephalalgia ; 38(6): 1138-1147, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28816506

RESUMEN

Background Drugs that modulate endocannabinoid signalling are effective in reducing nociception in animal models of pain and may be of value in the treatment of migraine. Methods We investigated the anti-nociceptive effects of inhibition of monoacylglycerol lipase (MGL), a key enzyme in the hydrolysis of the 2-arachidonoylglycerol, in a rat model of migraine based on nitroglycerin (NTG) administration. We evaluated c-fos expression in specific brain areas and nociceptive behavior in trigeminal and extra-trigeminal body areas. Results URB602, a reversible MGL inhibitor, did not show any analgesic effect in the tail flick test, but it inhibited NTG-induced hyperalgesia in both the tail flick test and the formalin test applied to the hind paw or to the orofacial area. Quite unexpectedly, URB602 potentiated formalin-induced hyperalgesia in the trigeminal area when used alone. The latter result was also confirmed using a structurally distinct, irreversible MGL inhibitor, JZL184. URB602 did not induce neuronal activation in the area of interest, but significantly reduced the NTG-induced neuronal activation in the ventrolateral column of the periaqueductal grey and the nucleus trigeminalis caudalis. Conclusions These findings support the hypothesis that modulation of the endocannabinoid system may be a valuable approach for the treatment of migraine. The topographically segregated effect of MGL inhibition in trigeminal/extra-trigeminal areas calls for further mechanistic research.


Asunto(s)
Hiperalgesia/enzimología , Trastornos Migrañosos/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Transducción de Señal/fisiología , Animales , Compuestos de Bifenilo/farmacología , Inhibidores Enzimáticos/farmacología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
17.
Int J Mol Sci ; 19(11)2018 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-30366396

RESUMEN

Transient receptor potential ankyrin type-1 (TRPA1) channels are known to actively participate in different pain conditions, including trigeminal neuropathic pain, whose clinical treatment is still unsatisfactory. The aim of this study was to evaluate the involvement of TRPA1 channels by means of the antagonist ADM_12 in trigeminal neuropathic pain, in order to identify possible therapeutic targets. A single treatment of ADM_12 in rats 4 weeks after the chronic constriction injury of the infraorbital nerve (IoN-CCI) significantly reduced the mechanical allodynia induced in the IoN-CCI rats. Additionally, ADM_12 was able to abolish the increased levels of TRPA1, calcitonin gene-related peptide (CGRP), substance P (SP), and cytokines gene expression in trigeminal ganglia, cervical spinal cord, and medulla induced in the IoN-CCI rats. By contrast, no significant differences between groups were seen as regards CGRP and SP protein expression in the pars caudalis of the spinal nucleus of the trigeminal nerve. ADM_12 also reduced TRP vanilloid type-1 (TRPV1) gene expression in the same areas after IoN-CCI. Our findings show the involvement of both TRPA1 and TRPV1 channels in trigeminal neuropathic pain, and in particular, in trigeminal mechanical allodynia. Furthermore, they provide grounds for the use of ADM_12 in the treatment of trigeminal neuropathic pain.


Asunto(s)
Dolor/metabolismo , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/metabolismo , Enfermedades del Nervio Trigémino/metabolismo , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Modelos Animales de Enfermedad , Hiperalgesia/metabolismo , Inmunohistoquímica , Masculino , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Sustancia P/metabolismo
18.
J Headache Pain ; 19(1): 51, 2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-30003352

RESUMEN

BACKGROUND: Calcitonin gene related peptide (CGRP) is a key neuropeptide involved in the activation of the trigeminovascular system and it is likely related to migraine chronification. Here, we investigated the role of CGRP in an animal model that mimics the chronic migraine condition via repeated and intermittent nitroglycerin (NTG) administration. We also evaluated the modulatory effect of topiramate on this experimental paradigm. Male Sprague-Dawley rats were injected with NTG (5 mg/kg, i.p.) or vehicle, every 2 days over a 9-day period (5 total injections). A group of animals was injected with topiramate (30 mg/kg, i.p.) or saline every day for 9 days. Twenty-four hours after the last administration of NTG or vehicle, animals underwent tail flick test and orofacial Von Frey test. Rats were subsequently sacrificed to evaluate c-Fos and CGRP gene expression in medulla-pons region, cervical spinal cord and trigeminal ganglia. RESULTS: NTG administration induced spinal hyperalgesia and orofacial allodynia, together with a significant increase in the expression of CGRP and c-Fos genes in trigeminal ganglia and central areas. Topiramate treatment prevented NTG-induced changes by reversing NTG-induced hyperalgesia and allodynia, and inhibiting CGRP and c-Fos gene expression in all areas evaluated. CONCLUSIONS: These findings point to the role of CGRP in the processes underlying migraine chronification and suggest a possible interaction with gamma-aminobutyrate (GABA) and glutamate transmission to induce/maintain central sensitization and to contribute to the dysregulation of descending pain system involved in chronic migraine.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/genética , Expresión Génica/efectos de los fármacos , Nitroglicerina/farmacología , Dolor/genética , Médula Espinal/efectos de los fármacos , Ganglio del Trigémino/efectos de los fármacos , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Modelos Animales de Enfermedad , Fructosa/análogos & derivados , Fructosa/farmacología , Masculino , Bulbo Raquídeo/efectos de los fármacos , Bulbo Raquídeo/metabolismo , Dolor/metabolismo , Percepción del Dolor/efectos de los fármacos , Puente/efectos de los fármacos , Puente/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley , Médula Espinal/metabolismo , Topiramato , Ganglio del Trigémino/metabolismo
20.
Cephalalgia ; 37(13): 1272-1284, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27919017

RESUMEN

Background Trigeminal sensitization represents a major mechanism underlying migraine attacks and their recurrence. Nitroglycerin (NTG) administration provokes spontaneous migraine-like headaches and in rat, an increased sensitivity to the formalin test. Kynurenic acid (KYNA), an endogenous regulator of glutamate activity and its analogues attenuate NTG-induced neuronal activation in the nucleus trigeminalis caudalis (NTC). The anti-hyperalgesic effect of KYNA analogue 1 (KYNA-A1) was investigated on animal models specific for migraine pain. Aim Rats made hyperalgesic by NTG administration underwent the plantar or orofacial formalin tests. The effect of KYNA-A1 was evaluated in terms of nocifensive behavior and of neuronal nitric oxide synthase (nNOS), calcitonin gene-related peptide (CGRP) and cytokines expression in areas involved in trigeminal nociception. Results KYNA-A1 abolished NTG-induced hyperalgesia in both pain models; NTG alone or associated to formalin injection induced an increased mRNA expression of CGRP, nNOS and cytokines in the trigeminal ganglia and central areas, which was reduced by KYNA-A1. Additionally, NTG caused a significant increase in nNOS immunoreactivity in the NTC, which was prevented by KYNA-A1. Conclusion Glutamate activity is likely involved in mediating hyperalgesia in an animal model specific for migraine. Its inhibition by means of a KYNA analogue modulates nNOS, CGRP and cytokines expression at peripheral and central levels.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/farmacología , Hiperalgesia/metabolismo , Ácido Quinurénico/farmacología , Animales , Hiperalgesia/inducido químicamente , Ácido Quinurénico/análogos & derivados , Masculino , Trastornos Migrañosos/metabolismo , Nitroglicerina/toxicidad , Dimensión del Dolor/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Vasodilatadores/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA