Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Apoptosis ; 29(3-4): 372-392, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37945816

RESUMEN

BACKGROUND: Skin cutaneous melanoma (SKCM) is an aggressive and life-threatening skin cancer. G-protein coupled receptor 143 (GPR143) belongs to the superfamily of G protein-coupled receptors. METHODS: We used the TCGA, GTEx, CCLE, and the Human Protein Atlas databases to examine the mRNA and protein expression of GPR143. In addition, we performed a survival analysis and evaluated the diagnostic efficacy using the Receiver-Operating Characteristic (ROC) curve. Through CIBERSORT, R programming, TIMER, Gene Expression Profiling Interactive Analysis, Sangerbox, and Kaplan-Meier plotter database analyses, we explored the relationships between GPR143, immune infiltration, and gene marker expression of immune infiltrated cells. Furthermore, we investigated the proteins that potentially interact with GPR143 and their functions using R programming and databases including STRING, GeneMANIA, and GSEA. Meanwhile, the cBioPortal, UALCNA, and the MethSurv databases were used to examine the genomic alteration and methylation of GPR143 in SKCM. The Connectivity Map database was used to discover potentially effective therapeutic molecules against SKCM. Finally, we conducted cell experiments to investigate the potential role of GPR143 in SKCM. RESULTS: We demonstrated a significantly high expression level of GPR143 in SKCM compared with normal tissues. High GPR143 expression and hypomethylation status of GPR143 were associated with a poorer prognosis. ROC analysis showed that the diagnostic efficacy of the GPR143 was 0.900. Furthermore, GPR143 expression was significantly correlated with immune infiltration in SKCM. We identified 20 neighbor genes and the pathways they enriched were anabolic process of pigmentation, immune regulation, and so on. Genomic alteration analysis revealed significantly different copy number variations related to GPR143 expression in SKCM, and shallow deletion could lead to high expression of GPR143. Ten potential therapeutic drugs against SKCM were identified. GPR143 knockdown inhibited melanoma cell proliferation, migration, and colony formation while promoting apoptosis. CONCLUSIONS: Our findings suggest that GPR143 serves as a novel diagnostic and prognostic biomarker and is associated with the progression of SKCM.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Neoplasias Cutáneas/genética , Variaciones en el Número de Copia de ADN , Apoptosis , Biología Computacional , Proteínas del Ojo , Glicoproteínas de Membrana
2.
Crit Rev Eukaryot Gene Expr ; 31(4): 35-48, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34587434

RESUMEN

The inhibitors of apoptosis protein (IAP)/baculoviral IAP repeat containing (BIRC) gene families are necessary for cell protection, and most of these genes act as endogenous inhibitors of apoptosis. In some cancers, the over-expression of the BIRC gene is associated with cancer progression, multidrug resistance, poor prognosis and short-term survival. In this study, we aimed to assess the effect of the BIRC family in pan-cancer. We downloaded transcriptome and clinical data from 33 types of TCGA tumor samples and adjacent tissues. Then, the expression characteristics of IAP family members BIRC2, BIRC3, BIRC5, BIRC6 and BIRC7 in pan-cancer were analyzed. R packet and Cox regression were used to analyze the clinical correlation. In addition, the transcription level of BIRC and immune subtypes, stem cells, immune tumor microenvironment (TME) and drug sensitivity were analyzed by multidimensional correlation. Our studies have shown that the expression of IAP family members BIRC2, BIRC3, BIRC5, BIRC6, and BIRC7 is different in different tumor types, and the heterogeneity is obvious in cancers. Overall, our analysis showed that BIRC2, BIRC3, BIRC6, and BIRC7 were mainly down-regulated in tumors, whereas BIRC5 was mainly up-regulated in tumors. The expression of IAP family members is related to the overall survival of patients. However, the direction of the association varies depending on specific IAP subtypes and specific types of cancer. More specifically, BIRC5 is mainly related to poor prognosis. The rest of the IAP family showed either a survival advantage or a survival disadvantage, depending on the type of cancer. In addition, BIRC2, BIRC3, BIRC5, BIRC6 and BIRC7 were significantly correlated with immune infiltration subtypes and had different degrees of correlation with the degree of interstitial cell infiltration and tumor cell dryness. Finally, our study revealed that BIRC2, BIRC5, and BIRC7 genes may be related to drug resistance of tumor cells. Our systematic analysis of (IAP) gene expression and its relationship with immune infiltration, TME, cancer stem cells, drug sensitivity and prognosis of cancer patients highlights the need to study IAP family members as separate entities in each specific cancer type. In addition, our study confirmed that IAP family genes are promising therapeutic targets for cancer and potential prognostic indicators for clinical application, although further laboratory verification is needed.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Neoplasias/metabolismo , Proteína Inhibidora de la Apoptosis Neuronal/genética , Proteína Inhibidora de la Apoptosis Neuronal/metabolismo , Transcriptoma , Microambiente Tumoral , Apoptosis , Resistencia a Antineoplásicos , Humanos , Proteínas Inhibidoras de la Apoptosis , Pronóstico
3.
Chin Med J (Engl) ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945693

RESUMEN

ABSTRACT: Chronic hepatitis B virus (HBV) infection is a global public health concern. Existing antiviral drugs, including nucleos(t)ide analogs and interferon-α, can suppress HBV replication and improve the prognosis. However, the persistence of covalently closed circular DNA (cccDNA), the integration of HBV-DNA into the host genome, and compromised immune responses impede the successful treatment of hepatitis B. While achieving a functional cure of HBV remains elusive with the current treatment methods, this is the goal of new therapeutic approaches. Therefore, developing novel antiviral drugs is necessary for achieving a functional or complete cure for chronic hepatitis B. In recent years, substantial progress has been made in drug discovery and development for HBV infection. Direct-acting antiviral agents such as entry inhibitors, capsid assembly modulators, subviral particle release inhibitors, cccDNA silencers, and RNA interference molecules have entered clinical trials. In addition, several immunomodulatory agents, including toll-like receptor agonists, therapeutic vaccines, checkpoint inhibitors, and monoclonal antibodies, are also making their way toward clinical use. In this review, we summarize the recent progress and limitations of chronic hepatitis B treatment and discuss perspectives on approaches to achieving functional cure. Although it will take some time for these new antiviral drugs to be widely used in clinical practice, combination therapy may become a preferable treatment option in the future.

4.
Hum Cell ; 37(3): 752-767, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38536633

RESUMEN

In recent years, abnormal m6A alteration in hepatocellular carcinoma (HCC) has been a focus on investigating the biological implications. In this study, our objective is to determine whether m6A modification contributes to the progression of HBV-related HCC. To achieve this, we employed a random forest model to screen top 8 characteristic m6A regulators from 19 candidate genes. Subsequently, we developed a nomogram model that utilizes these 8 characteristic m6A regulators to predict the prevalence of HBV-related HCC. According to decision curve analysis, patients may benefit from the nomogram model. The clinical impact curves exhibited a robust predictive capability of the nomogram models. Additionally, consensus molecular subtyping was employed to identify m6A modification patterns and m6A-related gene signature. The quantification of immune cell subsets was accomplished through the implementation of ssGSEA algorithms. PCA algorithms were developed to compute the m6A score for individual tumors. Two distinct m6A modification patterns, namely cluster A and cluster B, exhibited significant correlations with distinct immune infiltration patterns and biological pathways. Notably, patients belonging to cluster B demonstrated higher m6A scores compared to those in cluster A, as determined by the m6A score metric. Furthermore, the expression of IGFBP3 proteins was validated through immunofluorescence, revealing their pronounced lower expression in tumor tissues. In summary, our study underscores the importance of m6A modification in the advancement of HBV-related HCC. This research has the potential to yield novel prognostic biomarkers and therapeutic targets for the identification of HBV-related HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Virus de la Hepatitis B/genética , Metilación de ARN , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Algoritmos
5.
Appl Bionics Biomech ; 2022: 5160748, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35607429

RESUMEN

Background: Skin cutaneous melanoma is one of most aggressive type of cancers worldwide. Therefore, the identification of SKCM biomarkers is of great importance. FLG gene is one of the genes that encode proteins involved in epidermal formation. This was the first time to study the role of FLG in the prognosis and immune infiltrates of skin cutaneous melanoma. Methods: We downloaded the somatic mutation data of 471 SKCM patients from the Cancer Genome Atlas (TCGA) database and analyzed the mutation profiles with "MafTools" package. The expression of FLG and the overall survival in SKCM were analyzed by GEPIA. Additionally, univariate and multivariate Cox analyses were used to compare several clinical features with survival rates. We used TIMER to investigate FLG expression and collection of immune infiltration levels in SKCM, as well as cumulative survival in SKCM. Meanwhile, we also used CIBERSORT to investigate the association between FLG and cancer immune infiltration. In addition, gene set enrichment analysis (GSEA) was performed using the TCGA dataset. Furthermore, data from GEO and HPA was used to validate the results. Results: Single nucleotide polymorphism (SNP) happened more frequently than insertion or deletion, and C > T was the most common of SNV in SKCM. We selected the first 15 mutated genes by analyzing 471 melanoma samples, and the prognosis analysis showed that only the high expression of mutated FLG gene was significantly correlated with the poor prognosis of SKCM. Multivariate Cox analysis showed that age, the worse tumor status, less lymph node metastasis, and FLG expression were independent factors for prognosis. Specifically, lower infiltration levels of B cell, CD8+ T cells, neutrophils, and dendritic cells correlated with poor survival outcomes in SKCM. GSEA revealed that FLG is closely related to cancer pathways and epidermal cell proliferation. In addition, the previous conclusions can be verified from external data from GEO and HPA. Conclusion: The discovery of mutant gene FLG as a biomarker of SKCM helps elucidate how changes in the immune environment promote the occurrence of cutaneous melanoma. Further analysis suggested that FLG might be a new predictor of SKCM prognosis.

6.
Transl Cancer Res ; 10(4): 1692-1702, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35116494

RESUMEN

BACKGROUND: Skin cutaneous melanoma is one of the most aggressive types of cancers worldwide. Therefore, the identification of skin cutaneous melanoma (SKCM) biomarkers is of great importance. NLRP3 inflammasome complex nodelike receptor protein 3 (NLRP3) is one of the most characteristic inflammasomes belonging to the NLR protein family. This is the first time to use TCGA data to study NLRP3 expression in SKCM patients and its prognostic value, potential biological function, and impact on the immune system. METHODS: The expression of NLRP3 in SKCM was analyzed by Gene Expression Profiling Interactive Analysis (GEPIA). We assessed the impact of NLRP3 on SKCM patient survival through the survival module and then downloaded the SKCM data set from TCGA. Logistic regression was used to analyze the correlation between clinical data and NLRP3 expression. Univariate survival rate and multivariate Cox analysis were used to compare several clinical features and survival rates. We also used CIBERSORT to investigate the association between NLRP3 and cancer immune infiltration. We used TIMER to investigate NLRP3 expression and collection of immune infiltration levels in SKCM, as well as cumulative survival in SKCM. Gene set enrichment analysis (GSEA) was performed using the TCGA dataset. Besides, data from The Human Protein Atlas (HPA) was used to validate the results. RESULTS: Univariate Logistic regression analysis showed that increased NLRP3 expression was significantly correlated with age, stage, and tumor status. Specifically, NLRP3 expression level had significant positive correlations with infiltrating levels of B cell, CD4+ T cells, CD8+ T cells, Macrophages, Neutrophils, and DCs in SKCM. GSEA revealed that NLRP3 was closely correlated with pathways in cancer. HPA showed that in tumor tissues, NLRP3 had higher levels of expression compared to normal tissues. CONCLUSIONS: The discovery of NLRP3 as a new biomarker of SKCM helps to elucidate how changes in the immune environment promote the occurrence of cutaneous melanoma. Further analysis suggested that NLRP3 might be a predictor of SKCM prognosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA