Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39102101

RESUMEN

Paediatric patients with relapsed B cell acute lymphoblastic leukaemia (B-ALL) have poor prognosis, as relapse-causing clones are often refractory to common chemotherapeutics. While the molecular mechanisms leading to chemoresistance are varied, significant evidence suggests interactions between B-ALL blasts and cells within the bone marrow microenvironment modulate chemotherapy sensitivity. Importantly, bone marrow mesenchymal stem cells (BM-MSCs) and BM adipocytes are known to support B-ALL cells through multiple distinct molecular mechanisms. This review discusses the contribution of integrin-mediated B-ALL/BM-MSC signalling and asparagine supplementation in B-ALL chemoresistance. In addition, the role of adipocytes in sequestering anthracyclines and generating a BM niche favourable for B-ALL survival is explored. Furthermore, this review discusses the role of BM-MSCs and adipocytes in promoting a quiescent and chemoresistant B-ALL phenotype. Novel treatments which target these mechanisms are discussed herein, and are needed to improve dismal outcomes in patients with relapsed/refractory disease.

2.
Cancer Metastasis Rev ; 42(1): 277-296, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36622509

RESUMEN

Acute myeloid leukaemia (AML), chronic lymphocytic leukaemia (CLL), and multiple myeloma (MM) are age-related haematological malignancies with defined precursor states termed myelodysplastic syndrome (MDS), monoclonal B-cell lymphocytosis (MBL), and monoclonal gammopathy of undetermined significance (MGUS), respectively. While the progression from asymptomatic precursor states to malignancy is widely considered to be mediated by the accumulation of genetic mutations in neoplastic haematopoietic cell clones, recent studies suggest that intrinsic genetic changes, alone, may be insufficient to drive the progression to overt malignancy. Notably, studies suggest that extrinsic, microenvironmental changes in the bone marrow (BM) may also promote the transition from these precursor states to active disease. There is now enhanced focus on extrinsic, age-related changes in the BM microenvironment that accompany the development of AML, CLL, and MM. One of the most prominent changes associated with ageing is the accumulation of senescent mesenchymal stromal cells within tissues and organs. In comparison with proliferating cells, senescent cells display an altered profile of secreted factors (secretome), termed the senescence-associated-secretory phenotype (SASP), comprising proteases, inflammatory cytokines, and growth factors that may render the local microenvironment favourable for cancer growth. It is well established that BM mesenchymal stromal cells (BM-MSCs) are key regulators of haematopoietic stem cell maintenance and fate determination. Moreover, there is emerging evidence that BM-MSC senescence may contribute to age-related haematopoietic decline and cancer development. This review explores the association between BM-MSC senescence and the development of haematological malignancies, and the functional role of senescent BM-MSCs in the development of these cancers.


Asunto(s)
Neoplasias Hematológicas , Leucemia Linfocítica Crónica de Células B , Leucemia Mieloide Aguda , Células Madre Mesenquimatosas , Mieloma Múltiple , Humanos , Leucemia Linfocítica Crónica de Células B/metabolismo , Leucemia Linfocítica Crónica de Células B/patología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Leucemia Mieloide Aguda/genética , Senescencia Celular , Microambiente Tumoral
3.
Br J Cancer ; 130(1): 19-30, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37884682

RESUMEN

The side effects of cancer therapy continue to cause significant health and cost burden to the patient, their friends and family, and governments. A major barrier in the way in which these side effects are managed is the highly siloed mentality that results in a fragmented approach to symptom control. Increasingly, it is appreciated that many symptoms are manifestations of common underlying pathobiology, with changes in the gastrointestinal environment a key driver for many symptom sequelae. Breakdown of the mucosal barrier (mucositis) is a common and early side effect of many anti-cancer agents, known to contribute (in part) to a range of highly burdensome symptoms such as diarrhoea, nausea, vomiting, infection, malnutrition, fatigue, depression, and insomnia. Here, we outline a rationale for how, based on its already documented effects on the gastrointestinal microenvironment, medicinal cannabis could be used to control mucositis and prevent the constellation of symptoms with which it is associated. We will provide a brief update on the current state of evidence on medicinal cannabis in cancer care and outline the potential benefits (and challenges) of using medicinal cannabis during active cancer therapy.


Asunto(s)
Marihuana Medicinal , Mucositis , Neoplasias , Humanos , Marihuana Medicinal/efectos adversos , Mucositis/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Náusea/inducido químicamente , Náusea/tratamiento farmacológico , Vómitos , Microambiente Tumoral
4.
Brain Behav Immun ; 115: 229-247, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37858741

RESUMEN

Childhood is recognised as a period of immense physical and emotional development, and this, in part, is driven by underlying neurophysiological transformations. These neurodevelopmental processes are unique to the paediatric brain and are facilitated by augmented rates of neuroplasticity and expanded neural stem cell populations within neurogenic niches. However, given the immaturity of the developing central nervous system, innate protective mechanisms such as neuroimmune and antioxidant responses are functionally naïve which results in periods of heightened sensitivity to neurotoxic insult. This is highly relevant in the context of paediatric cancer, and in particular, the neurocognitive symptoms associated with treatment, such as surgery, radio- and chemotherapy. The vulnerability of the developing brain may increase susceptibility to damage and persistent symptomology, aligning with reports of more severe neurocognitive dysfunction in children compared to adults. It is therefore surprising, given this intensified neurocognitive burden, that most of the pre-clinical, mechanistic research focuses exclusively on adult populations and extrapolates findings to paediatric cohorts. Given this dearth of age-specific research, throughout this review we will draw comparisons with neurodevelopmental disorders which share comparable pathways to cancer treatment related side-effects. Furthermore, we will examine the unique nuances of the paediatric brain along with the somatic systems which influence neurological function. In doing so, we will highlight the importance of developing in vitro and in vivo paediatric disease models to produce age-specific discovery and clinically translatable research.


Asunto(s)
Encefalopatías , Deterioro Cognitivo Relacionado con la Quimioterapia , Neoplasias , Adulto , Niño , Humanos , Encéfalo
5.
Intern Med J ; 54(10): 1753-1756, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39228114

RESUMEN

Pushing selected information to clinicians, as opposed to the traditional method of clinicians pulling information from an electronic medical record, has the potential to improve care. A digital notification platform was designed by clinicians and implemented in a tertiary hospital to flag dysglycaemia. There were 112 patients included in the study, and the post-implementation group demonstrated lower rates of dysglycaemia (2.5% vs 1.1%, P = 0.038). These findings raise considerations for information delivery methods for multiple domains in contemporary healthcare.


Asunto(s)
Registros Electrónicos de Salud , Humanos , Femenino , Masculino , Persona de Mediana Edad , Anciano , Glucemia/análisis , Centros de Atención Terciaria
6.
Br J Haematol ; 203(4): 614-624, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37699574

RESUMEN

Expression of myeloperoxidase (MPO), a key inflammatory enzyme restricted to myeloid cells, is negatively associated with the development of solid tumours. Activated myeloid cell populations are increased in multiple myeloma (MM); however, the functional consequences of myeloid-derived MPO within the myeloma microenvironment are unknown. Here, the role of MPO in MM pathogenesis was investigated, and the capacity for pharmacological inhibition of MPO to impede MM progression was evaluated. In the 5TGM1-KaLwRij mouse model of myeloma, the early stages of tumour development were associated with an increase in CD11b+ myeloid cell populations and an increase in Mpo expression within the bone marrow (BM). Interestingly, MM tumour cell homing was increased towards sites of elevated myeloid cell numbers and MPO activity within the BM. Mechanistically, MPO induced the expression of key MM growth factors, resulting in tumour cell proliferation and suppressed cytotoxic T-cell activity. Notably, tumour growth studies in mice treated with a small-molecule irreversible inhibitor of MPO (4-ABAH) demonstrated a significant reduction in overall MM tumour burden. Taken together, our data demonstrate that MPO contributes to MM tumour growth, and that MPO-specific inhibitors may provide a new therapeutic strategy to limit MM disease progression.


Asunto(s)
Mieloma Múltiple , Peroxidasa , Microambiente Tumoral , Animales , Ratones , Médula Ósea/patología , Modelos Animales de Enfermedad , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Células Mieloides/patología , Peroxidasa/metabolismo
7.
Intern Med J ; 53(5): 819-824, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36880355

RESUMEN

Multiple myeloma (MM) is a disease of older people, yet factors relating to comorbidity and frailty may threaten treatment tolerability for many of this heterogenous group. There has been increasing interest in defining specific and clinically relevant frailty assessment tools within the MM population, with the goal of using these frailty scores, not just as a prognostic instrument, but also as a predictive tool to allow for a frailty-adapted treatment approach. This paper reviews the various frailty assessment frameworks used in the evaluation of patients with MM, including the International Myeloma Working Group Frailty Index (IMWG-FI), the Mayo Frailty Index and the simplified frailty scale. While the IMWG-FI remains the most widely accepted tool, the simplified frailty scale is the most user-friendly in busy day-to-day clinics based on its ease of use. This paper summarises the recommendations from the Myeloma Scientific Advisory Group (MSAG) of Myeloma Australia, on the use of frailty assessment tools in clinical practice and proposes a frailty-stratified treatment algorithm to aid clinicians in tailoring therapy for this highly heterogeneous patient population.


Asunto(s)
Fragilidad , Mieloma Múltiple , Humanos , Anciano , Fragilidad/epidemiología , Mieloma Múltiple/tratamiento farmacológico , Anciano Frágil , Pronóstico , Comorbilidad , Evaluación Geriátrica
8.
Cancer Metastasis Rev ; 40(1): 273-284, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33404860

RESUMEN

Macrophages are a vital component of the tumour microenvironment and crucial mediators of tumour progression. In the last decade, significant strides have been made in understanding the crucial functional roles played by macrophages in the development of the plasma cell (PC) malignancy, multiple myeloma (MM). Whilst the interaction between MM PC and stromal cells within the bone marrow (BM) microenvironment has been extensively studied, we are only just starting to appreciate the multifaceted roles played by macrophages in disease progression. Accumulating evidence demonstrates that macrophage infiltration is associated with poor overall survival in MM. Indeed, macrophages influence numerous pathways critical for the initiation and progression of MM, including homing of malignant cells to BM, tumour cell growth and survival, drug resistance, angiogenesis and immune suppression. As such, therapeutic strategies aimed at targeting macrophages within the BM niche have promise in the clinical setting. This review will discuss the functions elicited by macrophages throughout different stages of MM and provide a comprehensive evaluation of potential macrophage-targeted therapies.


Asunto(s)
Mieloma Múltiple , Médula Ósea , Humanos , Macrófagos , Mieloma Múltiple/terapia , Neovascularización Patológica , Microambiente Tumoral
9.
Gastroenterology ; 160(4): 1224-1239.e30, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33197448

RESUMEN

BACKGROUND & AIMS: Cancer-associated fibroblasts (CAFs), key constituents of the tumor microenvironment, either promote or restrain tumor growth. Attempts to therapeutically target CAFs have been hampered by our incomplete understanding of these functionally heterogeneous cells. Key growth factors in the intestinal epithelial niche, bone morphogenetic proteins (BMPs), also play a critical role in colorectal cancer (CRC) progression. However, the crucial proteins regulating stromal BMP balance and the potential application of BMP signaling to manage CRC remain largely unexplored. METHODS: Using human CRC RNA expression data, we identified CAF-specific factors involved in BMP signaling, then verified and characterized their expression in the CRC stroma by in situ hybridization. CRC tumoroids and a mouse model of CRC hepatic metastasis were used to test approaches to modify BMP signaling and treat CRC. RESULTS: We identified Grem1 and Islr as CAF-specific genes involved in BMP signaling. Functionally, GREM1 and ISLR acted to inhibit and promote BMP signaling, respectively. Grem1 and Islr marked distinct fibroblast subpopulations and were differentially regulated by transforming growth factor ß and FOXL1, providing an underlying mechanism to explain fibroblast biological dichotomy. In patients with CRC, high GREM1 and ISLR expression levels were associated with poor and favorable survival, respectively. A GREM1-neutralizing antibody or fibroblast Islr overexpression reduced CRC tumoroid growth and promoted Lgr5+ intestinal stem cell differentiation. Finally, adeno-associated virus 8 (AAV8)-mediated delivery of Islr to hepatocytes increased BMP signaling and improved survival in our mouse model of hepatic metastasis. CONCLUSIONS: Stromal BMP signaling predicts and modifies CRC progression and survival, and it can be therapeutically targeted by novel AAV-directed gene delivery to the liver.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Neoplasias Colorrectales/patología , Inmunoglobulinas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neoplasias Hepáticas/secundario , Adulto , Anciano , Anciano de 80 o más Años , Animales , Fibroblastos Asociados al Cáncer/metabolismo , Carcinogénesis/patología , Diferenciación Celular , Línea Celular Tumoral , Neoplasias Colorrectales/mortalidad , Progresión de la Enfermedad , Femenino , Hepatocitos/metabolismo , Humanos , Inmunoglobulinas/genética , Estimación de Kaplan-Meier , Masculino , Ratones , Persona de Mediana Edad , Pronóstico , Transducción de Señal , Microambiente Tumoral , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Cell Mol Life Sci ; 78(1): 249-270, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32170339

RESUMEN

eIF4E plays key roles in protein synthesis and tumorigenesis. It is phosphorylated by the kinases MNK1 and MNK2. Binding of MNKs to eIF4G enhances their ability to phosphorylate eIF4E. Here, we show that mTORC1, a key regulator of mRNA translation and oncogenesis, directly phosphorylates MNK2 on Ser74. This suppresses MNK2 activity and impairs binding of MNK2 to eIF4G. These effects provide a novel mechanism by which mTORC1 signaling impairs the function of MNK2 and thereby decreases eIF4E phosphorylation. MNK2[S74A] knock-in cells show enhanced phosphorylation of eIF4E and S6K1 (i.e., increased mTORC1 signaling), enlarged cell size, and increased invasive and transformative capacities. MNK2[Ser74] phosphorylation was inversely correlated with disease progression in human prostate tumors. MNK inhibition exerted anti-proliferative effects in prostate cancer cells in vitro. These findings define a novel feedback loop whereby mTORC1 represses MNK2 activity and oncogenic signaling through eIF4E phosphorylation, allowing reciprocal regulation of these two oncogenic pathways.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Factor 4E Eucariótico de Iniciación/antagonistas & inhibidores , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Morfolinas/farmacología , Mutagénesis Sitio-Dirigida , Fosforilación/efectos de los fármacos , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/efectos de los fármacos , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo
11.
Br J Haematol ; 193(1): 171-175, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33620089

RESUMEN

Disease relapse is the greatest cause of treatment failure in paediatric B-cell acute lymphoblastic leukaemia (B-ALL). Current risk stratifications fail to capture all patients at risk of relapse. Herein, we used a machine-learning approach to identify B-ALL blast-secreted factors that are associated with poor survival outcomes. Using this approach, we identified a two-gene expression signature (CKLF and IL1B) that allowed identification of high-risk patients at diagnosis. This two-gene expression signature enhances the predictive value of current at diagnosis or end-of-induction risk stratification suggesting the model can be applied continuously to help guide implementation of risk-adapted therapies.


Asunto(s)
Quimiocinas/genética , Interleucina-1beta/genética , Proteínas con Dominio MARVEL/genética , Aprendizaje Automático/estadística & datos numéricos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Enfermedad Aguda , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidad , Valor Predictivo de las Pruebas , Recurrencia , Medición de Riesgo/normas , Análisis de Supervivencia , Transcriptoma/genética , Insuficiencia del Tratamiento
12.
Blood ; 134(1): 30-43, 2019 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-31023703

RESUMEN

The era of targeted therapies has seen significant improvements in depth of response, progression-free survival, and overall survival for patients with multiple myeloma. Despite these improvements in clinical outcome, patients inevitably relapse and require further treatment. Drug-resistant dormant myeloma cells that reside in specific niches within the skeleton are considered a basis of disease relapse but remain elusive and difficult to study. Here, we developed a method to sequence the transcriptome of individual dormant myeloma cells from the bones of tumor-bearing mice. Our analyses show that dormant myeloma cells express a distinct transcriptome signature enriched for immune genes and, unexpectedly, genes associated with myeloid cell differentiation. These genes were switched on by coculture with osteoblastic cells. Targeting AXL, a gene highly expressed by dormant cells, using small-molecule inhibitors released cells from dormancy and promoted their proliferation. Analysis of the expression of AXL and coregulated genes in human cohorts showed that healthy human controls and patients with monoclonal gammopathy of uncertain significance expressed higher levels of the dormancy signature genes than patients with multiple myeloma. Furthermore, in patients with multiple myeloma, the expression of this myeloid transcriptome signature translated into a twofold increase in overall survival, indicating that this dormancy signature may be a marker of disease progression. Thus, engagement of myeloma cells with the osteoblastic niche induces expression of a suite of myeloid genes that predicts disease progression and that comprises potential drug targets to eradicate dormant myeloma cells.


Asunto(s)
Mieloma Múltiple/genética , Mieloma Múltiple/patología , Recurrencia Local de Neoplasia/genética , Células Madre Neoplásicas/patología , Nicho de Células Madre/genética , Animales , Humanos , Ratones , Recurrencia Local de Neoplasia/patología , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Transcriptoma , Tirosina Quinasa del Receptor Axl
13.
Haematologica ; 106(12): 3176-3187, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33147936

RESUMEN

Multiple myeloma (MM) disease progression is dependent on the ability of MM plasma cells (PCs) to egress from the bone marrow (BM), enter the circulation and disseminate to distal BM sites. Expression of the chemokine CXCL12 by BM stromal cells is crucial for MM PC retention within the BM. However, the mechanisms which overcome CXCL12-mediated retention to enable dissemination are poorly understood. We have previously identified that treatment with the CCR1 ligand CCL3 inhibits the response to CXCL12 in MM cell lines, suggesting that CCL3/CCR1 signalling may enable egress of MM PC from the BM. Here, we demonstrated that CCR1 expression was an independent prognostic indicator in newly diagnosed MM patients. Furthermore, we showed that CCR1 is a crucial driver of dissemination in vivo, with CCR1 expression in the murine MM cell line 5TGM1 being associated with an increased incidence of bone and splenic disseminated tumours in C57BL/KaLwRij mice. Furthermore, we demonstrated that CCR1 knockout in the human myeloma cell line OPM2 resulted in a >95% reduction in circulating MM PC numbers and BM and splenic tumour dissemination following intratibial injection in NSG mice. Therapeutic targeting of CCR1 with the inhibitor CCX9588 significantly reduced OPM2 or RPMI-8226 dissemination in intratibial xenograft models. Collectively, our findings suggest a novel role for CCR1 as a critical driver of BM egress of MM PCs during tumour dissemination. Furthermore, these data suggest that CCR1 may represent a potential therapeutic target for the prevention of MM tumour dissemination.


Asunto(s)
Mieloma Múltiple , Animales , Línea Celular Tumoral , Humanos , Ratones , Ratones Endogámicos C57BL , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Células Plasmáticas , Receptores CCR1/genética
14.
Intern Med J ; 51(10): 1707-1712, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34664367

RESUMEN

Imaging modalities for multiple myeloma (MM) have evolved to enable earlier detection of disease. Furthermore, the diagnosis of MM requiring therapy has recently changed to include disease prior to bone destruction, specifically the detection of focal bone lesions. Focal lesions are early, abnormal areas in the bone marrow, which may signal the development of subsequent lytic lesions that typically occur within the next 18-24 months. Cross-sectional imaging modalities are more sensitive for the detection and monitoring of bone and bone marrow disease and are now included in the International Myeloma Working Group current consensus criteria for initial diagnosis and treatment response assessment. The aim of this consensus practice statement is to review the evidence supporting these modalities. A more detailed Position Statement can be found on the Myeloma Australia website.


Asunto(s)
Mieloma Múltiple , Paraproteinemias , Consenso , Diagnóstico por Imagen , Humanos , Mieloma Múltiple/diagnóstico por imagen , Mieloma Múltiple/terapia , Células Plasmáticas
16.
J Cell Physiol ; 233(9): 7320-7332, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29663378

RESUMEN

Saethre-Chotzen syndrome (SCS), associated with TWIST-1 mutations, is characterized by premature fusion of cranial sutures. TWIST-1 haploinsufficiency, leads to alterations in suture mesenchyme cellular gene expression patterns, resulting in aberrant osteogenesis and craniosynostosis. We analyzed the expression of the TWIST-1 target, Tyrosine kinase receptor c-ros-oncogene 1 (C-ROS-1) in TWIST-1 haploinsufficient calvarial cells derived from SCS patients and calvaria of Twist-1del/+ mutant mice and found it to be highly expressed when compared to TWIST-1 wild-type controls. Knock-down of C-ROS-1 expression in TWIST-1 haploinsufficient calvarial cells derived from SCS patients was associated with decreased capacity for osteogenic differentiation in vitro. Furthermore, treatment of human SCS calvarial cells with the tyrosine kinase chemical inhibitor, Crizotinib, resulted in reduced C-ROS-1 activity and the osteogenic potential of human SCS calvarial cells with minor effects on cell viability or proliferation. Cultured human SCS calvarial cells treated with Crizotinib exhibited a dose-dependent decrease in alkaline phosphatase activity and mineral deposition, with an associated decrease in expression levels of Runt-related transcription factor 2 and OSTEOPONTIN, with reduced PI3K/Akt signalling in vitro. Furthermore, Crizotinib treatment resulted in reduced BMP-2 mediated bone formation potential of whole Twist-1del/+ mutant mouse calvaria organotypic cultures. Collectively, these results suggest that C-ROS-1 promotes osteogenic differentiation of TWIST-1 haploinsufficient calvarial osteogenic progenitor cells. Furthermore, the aberrant osteogenic potential of these cells is inhibited by the reduction of C-ROS-1. Therefore, targeting C-ROS-1 with a pharmacological agent, such as Crizotinib, may serve as a novel therapeutic strategy to alleviate craniosynostosis associated with aberrant TWIST-1 function.


Asunto(s)
Acrocefalosindactilia/genética , Acrocefalosindactilia/patología , Haploinsuficiencia/genética , Osteogénesis , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Cráneo/patología , Proteína 1 Relacionada con Twist/metabolismo , Fosfatasa Alcalina/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Suturas Craneales/patología , Crizotinib/farmacología , Heterocigoto , Humanos , Ratones , Mutación/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo
17.
J Cell Physiol ; 233(5): 3769-3783, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28834550

RESUMEN

The skeleton has recently emerged as a critical insulin target tissue that regulates whole body glucose metabolism and male reproductive function. While our understanding of these new regulatory axes remains in its infancy, the bone-specific protein, osteocalcin, has been shown to be centrally involved. Undercarboxylated osteocalcin acts as a secretagogue in a feed-forward loop to stimulate pancreatic ß-cell proliferation and insulin secretion, improve insulin sensitivity, and promote testosterone production. Importantly, dysregulation of insulin signaling in bone causes a reduction in serum osteocalcin levels that is associated with elevated blood glucose and reduced serum insulin levels, suggesting that the skeleton may play a significant role in the development of diet-induced insulin resistance. Insulin signaling is negatively regulated by the mammalian target of rapamycin complex 1 (mTORC1) which becomes hyper-activated in response to nutrient overload. Loss- and gain-of function models suggest that mTORC1 function in bone is essential for normal skeletal development; however, the role of this complex in the regulation of glucose metabolism remains to be determined. This review highlights our current understanding of the role played by osteocalcin in the skeletal regulation of glucose metabolism and fertility. In particular, it examines data emerging from transgenic mouse models which have revealed a pancreas-bone-testis regulatory axis and discusses recent human studies which seek to corroborate findings from mouse models with clinical observations. Moreover, we review recent studies which suggest dysregulation of insulin signaling in bone leads to the development of insulin resistance and discuss the potential role of mTORC1 signaling in this process.


Asunto(s)
Fertilidad/fisiología , Glucosa/metabolismo , Resistencia a la Insulina/fisiología , Músculo Esquelético/metabolismo , Osteocalcina/metabolismo , Animales , Metabolismo Energético/fisiología , Humanos
18.
Mol Genet Genomics ; 293(5): 1217-1229, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29882166

RESUMEN

Recurrent oncogenic fusion genes play a critical role in the development of various cancers and diseases and provide, in some cases, excellent therapeutic targets. To date, analysis tools that can identify and compare recurrent fusion genes across multiple samples have not been available to researchers. To address this deficiency, we developed Co-occurrence Fusion (Co-fuse), a new and easy to use software tool that enables biologists to merge RNA-seq information, allowing them to identify recurrent fusion genes, without the need for exhaustive data processing. Notably, Co-fuse is based on pattern mining and statistical analysis which enables the identification of hidden patterns of recurrent fusion genes. In this report, we show that Co-fuse can be used to identify 2 distinct groups within a set of 49 leukemic cell lines based on their recurrent fusion genes: a multiple myeloma (MM) samples-enriched cluster and an acute myeloid leukemia (AML) samples-enriched cluster. Our experimental results further demonstrate that Co-fuse can identify known driver fusion genes (e.g., IGH-MYC, IGH-WHSC1) in MM, when compared to AML samples, indicating the potential of Co-fuse to aid the discovery of yet unknown driver fusion genes through cohort comparisons. Additionally, using a 272 primary glioma sample RNA-seq dataset, Co-fuse was able to validate recurrent fusion genes, further demonstrating the power of this analysis tool to identify recurrent fusion genes. Taken together, Co-fuse is a powerful new analysis tool that can be readily applied to large RNA-seq datasets, and may lead to the discovery of new disease subgroups and potentially new driver genes, for which, targeted therapies could be developed. The Co-fuse R source code is publicly available at https://github.com/sakrapee/co-fuse .


Asunto(s)
Genómica , Leucemia Mieloide Aguda/genética , Proteínas de Fusión Oncogénica/genética , Programas Informáticos , Biología Computacional , Bases de Datos Genéticas , Humanos , Leucemia Mieloide Aguda/patología , Proteínas de Fusión Oncogénica/aislamiento & purificación , Análisis de Secuencia de ARN
19.
Stem Cells ; 35(4): 940-951, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28026090

RESUMEN

Since its discovery more than 25 years ago, the STRO-1 antibody has played a fundamental role in defining the hierarchical nature of mesenchymal precursor cells (MPC) and their progeny. STRO-1 antibody binding remains a hallmark of immature pluripotent MPC. Despite the significance of STRO-1 in the MPC field, the identity of the antigen has remained elusive. Using a combination of two-dimensional gel electrophoresis, coupled with Western blotting and Tandem mass spectroscopy, we have identified the STRO-1 antigen as heat shock cognate 70 (HSC70;HSPA8). STRO-1 binds to immune-precipitated HSC70 and siRNA-mediated knock down of HSPA8 reduced STRO-1 binding. STRO-1 surface binding does not correlate with HSC70 expression and sequestration of cholesterol reduces STRO-1 surface binding, suggesting that the plasma membrane lipid composition may be an important determinant in the presentation of HSC70 on the cell surface. HSC70 is present on the surface of STRO-1+ but not STRO-1- cell lines as assessed by cell surface biotinylation and recombinant HSC70 blocks STRO-1 binding to the cell surface. The STRO-1 epitope on HSC70 was mapped to the ATPase domain using a series of deletion mutants in combination with peptide arrays. Deletion of the first four amino acids of the consensus epitope negated STRO-1 binding. Notably, in addition to HSC70, STRO-1 cross-reacts with heat shock protein 70 (HSP70), however all the clonogenic cell activity is restricted to the STRO-1BRIGHT /HSP70- fraction. These results provide important insight into the properties that define multipotent MPC and provide the impetus to explore the role of cell surface HSC70 in MPC biology. Stem Cells 2017;35:940-951.


Asunto(s)
Anticuerpos/metabolismo , Antígenos de Superficie/metabolismo , Proteínas del Choque Térmico HSC70/metabolismo , Células Madre Mesenquimatosas/metabolismo , Secuencia de Aminoácidos , Biomarcadores/metabolismo , Células de la Médula Ósea/citología , Línea Celular , Colesterol/metabolismo , Ensayo de Unidades Formadoras de Colonias , Mapeo Epitopo , Proteínas del Choque Térmico HSC70/química , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Leucocitos Mononucleares/citología , Microdominios de Membrana/metabolismo , Células Madre Mesenquimatosas/citología , Unión Proteica , Dominios Proteicos
20.
BMC Cancer ; 18(1): 939, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30285678

RESUMEN

In many types of solid tumours, the aberrant expression of the cell adhesion molecule N-cadherin is a hallmark of epithelial-to-mesenchymal transition, resulting in the acquisition of an aggressive tumour phenotype. This transition endows tumour cells with the capacity to escape from the confines of the primary tumour and metastasise to secondary sites. In this review, we will discuss how N-cadherin actively promotes the metastatic behaviour of tumour cells, including its involvement in critical signalling pathways which mediate these events. In addition, we will explore the emerging role of N-cadherin in haematological malignancies, including bone marrow homing and microenvironmental protection to anti-cancer agents. Finally, we will discuss the evidence that N-cadherin may be a viable therapeutic target to inhibit cancer metastasis and increase tumour cell sensitivity to existing anti-cancer therapies.


Asunto(s)
Antineoplásicos/uso terapéutico , Cadherinas/fisiología , Neoplasias Hematológicas/fisiopatología , Metástasis de la Neoplasia/fisiopatología , Neoplasias/tratamiento farmacológico , Cadherinas/metabolismo , Movimiento Celular/fisiología , Humanos , Invasividad Neoplásica/fisiopatología , Neoplasias/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/fisiología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/fisiología , Vía de Señalización Wnt/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA