Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

País de afiliación
Intervalo de año de publicación
1.
J Esthet Restor Dent ; 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38853343

RESUMEN

AIM: This study evaluated the efficacy and cytotoxicity of 35% hydrogen peroxide (HP) gel incorporated with 10% (w/w) biosilicate (BioS) on sound enamel and early-stage enamel erosion lesions. METHODS: Discs of enamel/dentin were selected, subjected to erosive cycles (0.3% citric acid, pH 2.6), and treated with (n = 8): HP (35% HP, positive control); HP_BioS [carboxymethyl cellulose (CMC) + HP + BioS]; BioS (CMC + BioS); CMC (negative control). The discs were adapted to artificial pulp chambers with the enamel exposed for bleaching, and the dentin facing toward the culture medium (Dulbecco's modified Eagle's medium [DMEM]). Bleaching was performed in three 30-min sessions at 7-day intervals. After bleaching, the diffusion product (DMEM extract + diffused HP) was pipetted onto MDPC-23 odontoblastic cell line and inoculated. Color parameters (ΔL, Δa, Δb), color change (ΔE00), and changes in whiteness index (ΔWID) were determined before (T0) and after the last bleaching session (T3). Cell viability (MTT, %), H2O2 diffusion (µg/mL), oxidative cell stress (OxS), and cell fluorescence (live/dead assay, in confocal microscopy) were assessed (ANOVA/Tukey; α = 0.05). RESULTS: No difference in ΔL, Δa, Δb, ΔE00, and ΔWID were found between HP and HP_BioS (p > 0.05). The incorporation of BioS decreased the HP diffusion into the substrates and mitigated oxidative stress in early-stage eroded enamel (p < 0.05). HP_BioS presented significantly higher cell viability compared with HP under erosion conditions. Live/dead assay indicated that BioS_HP maintained viability with larger clusters of viable cells. CONCLUSION: Incorporating BioS into HP maintained bleaching effectiveness, favored cell viability, reduced the oxidative stress, and the cytotoxicity in teeth with early-stage erosion. CLINICAL SIGNIFICANCE: BioS formulation showed promising results for reducing cytotoxicity in patients seeking tooth bleaching and presenting undetectable early-stage erosion.

2.
J Mater Sci Mater Med ; 32(9): 110, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34453617

RESUMEN

This study aimed to evaluate the effect of grinding on some surface properties of two lithium disilicate-based glass-ceramics, one experimental new product denominated LaMaV Press (UFSCar-Brazil) and another commercial known as IPS e-max Press (Ivoclar), in the context of simulated clinical adjustment. Discs (N = 24, 12 mm in diameter) were separated into four groups: LaMaV Press with no grinding (E), LaMaV Press after grinding (EG), IPS e-max Press with no grinding (C), and IPS e-max Press after grinding (CG). A 0.1-mm deep grinding was carried out on EG and CG samples (final thickness of 1.4 mm) using a diamond stone in a low-speed device. The E and C samples had the same thickness. The effect of grinding on the sample surfaces was evaluated by X-ray diffraction, mechanical and optical profilometry, scanning electron microscopy, goniometry, and Vickers hardness. The mean roughness (Ra) was evaluated by Kruskal-Wallis and Student-Newman-Keuls statistics. The surface energy (SE) by the sessile drop method and Vickers hardness (VH) were analyzed using two-way ANOVA. The Ra medians were E = 1.69 µm, EG = 1.57 µm, C = 1.45 µm, and CG = 1.13 µm with p = 0.0284. The SE and VH were similar for all materials and treatments. Grinding smoothed the surfaces and did not significantly alter the hardness and surface energy of both LaMaV Press and IPS e-max Press. These glass-ceramics presented similar surface properties, and clinical adjustments can be implemented without loss of performance of both materials. A grinding standardization device developed that allowed to control the amount of grinding, the speed of rotation speed and the force exerted on the samples.


Asunto(s)
Cerámica/química , Porcelana Dental/química , Cerámica/síntesis química , Diseño Asistido por Computadora , Porcelana Dental/síntesis química , Diamante/química , Dureza , Humanos , Ensayo de Materiales , Fenómenos Mecánicos , Microscopía Electrónica de Rastreo , Propiedades de Superficie , Difracción de Rayos X
3.
Biofouling ; 36(2): 234-244, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32321306

RESUMEN

This study evaluated adhesion and biofilm formation by Candida albicans, Pseudomonas aeruginosa and Staphylococcus epidermidis on surfaces of titanium (Ti) and titanium coated with F18 Bioactive Glass (BGF18). Biofilms were grown and the areas coated with biofilm were determined after 2, 4 and 8 h. Microscopy techniques were applied in order to visualize the structure of the mature biofilm and the extracellular matrix. On the BGF18 specimens, there was less biofilm formation by C. albicans and S. epidermidis after incubation for 8 h. For P. aeruginosa biofilm, a reduction was observed after incubation for 4 h, and it remained reduced after 8 h on BGF18 specimens. All biofilm matrices seemed to be thicker on BGF18 surface than on titanium surfaces. BGF18 showed significant anti-biofilm activity in comparison with Ti in the initial periods of biofilm formation; however, there was extensive biofilm after incubation for 48 h.


Asunto(s)
Materiales Biocompatibles/química , Biopelículas/crecimiento & desarrollo , Vidrio/química , Prótesis e Implantes/microbiología , Titanio/química , Candida albicans/crecimiento & desarrollo , Pseudomonas aeruginosa/crecimiento & desarrollo , Staphylococcus epidermidis/crecimiento & desarrollo , Propiedades de Superficie
4.
J Craniofac Surg ; 31(6): 1838-1840, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32796301

RESUMEN

The ideal implant for anophthalmic socket reconstruction has yet to be developed. Biosilicate, a highly bioactive glass-ceramic, has been used in the composition of conical implants, which were initially tested in rabbit orbits with excellent results. However, the use of this material and the conical shape of the implants require further study in the human anophthalmic socket. Thus, we propose the use of a new conical implant composed of Biosilicate for orbital volume augmentation in anophthalmic sockets. This prospective, randomized study included 45 patients receiving conical implants composed of either Biosilicate or polymethylmethacrylate (control). Patients were evaluated clinically before and 7, 30, 60, 120, and 180 days after implantation. Systemic evaluations, laboratory tests, and computed tomography of the orbits were performed preoperatively and 180 days postoperatively. Both groups had good outcomes with no significant infectious or inflammatory processes. Only 1 patient, in the Biosilicate group, had early implant extrusion. Laboratory tests were normal in both groups. Computed tomography scans showed that the implants in both groups were well positioned. The new conical implant composed of Biosilicate was successfully used for anophthalmic socket reconstruction. This implant may provide a good alternative to the only conical implant currently available on the market, which is composed of porous polyethylene.


Asunto(s)
Anoftalmos/cirugía , Vidrio , Enfermedades Orbitales/cirugía , Implantes Orbitales , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Implantación de Prótesis/métodos , Adulto Joven
5.
Clin Oral Implants Res ; 29(11): 1120-1125, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30264907

RESUMEN

PURPOSE: The purpose of this study was to evaluate the effect of surface functionalization with bioactive glass BSF18 on the osseointegration of sandblasted and dual acid-etched surface (AE) implants. METHODS AND MATERIALS: Forty Morse taper implants with an AE surface as controls (C) or with an AE surface functionalized with BSF18 (BF) were placed in the mandibles of 10 beagles. Implants were analyzed after 2 and 4 weeks of healing. Implant stability quotient (ISQ) values were registered immediately after installation and prior to sacrifice. Samples were analyzed for bone-to-implant contact (BIC) and bone density (BD). The characterization of BF implants included surface roughness analysis with atomic force microscopy and contact angle (CA) analysis to evaluate wettability. Data were analyzed using two-way ANOVA followed by Tukey's test (p < 0.05). RESULTS: Surface roughness was not affected by BF treatment. CA was lower in the BF group compared to the C group. No significant difference was observed in ISQ values between surfaces (p = 0,231), irrespective of time. Significantly higher ISQ values were observed for both implants after 4 weeks when compared with baseline (p = 0.04). Significantly higher BIC (p = 0.011) and BD (p = 0.025) values were observed for the BF compared to the C group at 2 weeks. Significantly higher BIC (p = 0.030) and BD (p = 0.015) values for the C group were observed at 4 weeks compared to 2 weeks. No significant difference was observed in the BF group between 2 and 4 weeks. CONCLUSIONS: Implant functionalization with BSF18 improved the wettability of the implant surface; enhancing BIC and BD at 2 weeks.

6.
Phys Chem Chem Phys ; 19(9): 6594-6600, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28203658

RESUMEN

In this work, mixed alkali metaphosphate glasses based on K-Na, Rb-Na, Rb-Li, Cs-Na and Cs-Li combinations were studied by differential scanning calorimetry (DSC), complex impedance spectroscopy, and Raman spectroscopy. DSC analyses show that both the glass transition (Tg) and melting temperatures (Tm) exhibit a clear mixed-ion effect. The ionic conductivity shows a strong mixed-ion effect and decreases by more than six orders of magnitude at room temperature for Rb-Na or Cs-Li alkali pairs. This study confirms that the mixed-ion effect may be explained as a natural consequence of random ion mixing because ion transport is favoured between well-matched energy sites and is impeded due to the structural mismatch between neighbouring sites for dissimilar ions.

7.
J Mater Sci Mater Med ; 26(2): 74, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25631271

RESUMEN

The aim of this study was to evaluate the effects of highly porous Biosilicate(®) scaffolds on bone healing in a tibial bone defect model in rats by means of histological evaluation (histopathological and immunohistochemistry analysis) of the bone callus and the systemic inflammatory response (immunoenzymatic assay). Eighty Wistar rats (12 weeks-old, weighing±300 g) were randomly divided into 2 groups (n=10 per experimental group, per time point): control group and Biosilicate® group (BG). Each group was euthanized 3, 7, 14 and 21 days post-surgery. Histological findings revealed a similar inflammatory response in both experimental groups, 3 and 7 days post-surgery. During the experimental periods (3-21 days post-surgery), it was observed that the biomaterial degradation, mainly in the periphery region, provided the development of the newly formed bone into the scaffolds. Immunohistochemistry analysis demonstrated that the Biosilicate® scaffolds stimulated cyclooxygenase-2, vascular endothelial growth factor and runt-related transcription factor 2 expression. Furthermore, in the immunoenzymatic assay, BG presented no difference in the level of tumor necrosis factor alpha in all experimental periods. Still, BG showed a higher level of interleukin 4 after 14 days post-implantation and a lower level of interleukin 10 in 21 days post-surgery. Our results demonstrated that Biosilicate® scaffolds can contribute for bone formation through a suitable architecture and by stimulating the synthesis of markers related to the bone repair.


Asunto(s)
Regeneración Ósea , Vidrio/química , Oseointegración , Fracturas de la Tibia/patología , Fracturas de la Tibia/terapia , Andamios del Tejido , Animales , Análisis de Falla de Equipo , Masculino , Ensayo de Materiales , Porosidad , Diseño de Prótesis , Ratas , Fracturas de la Tibia/fisiopatología , Resultado del Tratamiento
8.
J Mater Sci Mater Med ; 24(2): 365-79, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23114636

RESUMEN

Bioactive glasses and glass-ceramics of the SiO(2)-CaO-P(2)O(5) system were synthesised by means of a sol-gel method using different phosphorus precursors according to their respective rates of hydrolysis-triethylphosphate (OP(OC(2)H(5))(3)), phosphoric acid (H(3)PO(4)) and a solution prepared by dissolving phosphorus oxide (P(2)O(5)) in ethanol. The resulting materials were characterised by differential scanning calorimetry and thermogravimetry, X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy and by in vitro bioactivity tests in acellular simulated body fluid. The different precursors significantly affected the main steps of the synthesis, beginning with the time required for gel formation. The most striking influence of these precursors was observed during the thermal treatments at 700-1,200 °C that were used to convert the gels into glasses and glass-ceramics. The samples exhibited very different mineralisation behaviours; especially those prepared using the phosphoric acid, which had a reduced onset temperature of crystallisation and an increased resistance to devitrification. However, all resulting materials were bioactive. The in vitro bioactivity of these materials was strongly affected by the heat treatment temperature. In general, their bioactivity decreased with increasing treatment temperature. For crystallised samples obtained above 900 °C, the bioactivity was favoured by the presence of two crystalline phases: wollastonite (CaSiO(3)) and tricalcium phosphate (α-Ca(3)(PO(4))(2)).


Asunto(s)
Cerámica/química , Cerámica/síntesis química , Fósforo/farmacología , Sangre , Líquidos Corporales/química , Líquidos Corporales/fisiología , Cerámica/farmacología , Cristalización , Geles/síntesis química , Geles/química , Geles/farmacología , Humanos , Ensayo de Materiales , Modelos Biológicos , Transición de Fase , Fósforo/química , Propiedades de Superficie , Temperatura , Difracción de Rayos X
9.
Dent Mater ; 39(2): 217-226, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36690502

RESUMEN

OBJECTIVE: To analyze simplified adhesive containing pure or silanized bioglass 45S5 (with calcium) or Sr-45S5 (strontium-substituted) fillers applied on dentin and to evaluate the microtensile bond strength (µTBS), interface nanoleakage, degree of conversion of adhesive, collagen degradation and remineralization. METHODS: Ambar Universal adhesive (FGM) was doped with 10 wt% bioactive glasses to form following groups: Control (no bioglass), 45S5 (conventional bioglass 45S5), Sr-45S5 (Sr-substituted bioglass 45S5), Sil-45S5 (silanized bioglass 45S5) and Sil-Sr-45S5 (silanized bioglass Sr-45S5). Adhesives were applied after dentin acid-etching using phosphoric acid at extracted human molars. Resin-dentin sticks were obtained and tested for µTBS, nanoleakage at 24 h or 6 months. Degree of conversion was measured using micro-Raman spectroscopy. Dentin remineralization was assessed by FTIR after 6-month storage in PBS. Hydroxyproline (HYP) release was surveyed by UV-Vis spectroscopy. Statistical analysis was performed using ANOVA and Tukey's test (p < 0.05). RESULTS: Regarding µTBS, Sr-45S5 and 45S5 presented higher and stable results (p > 0.05). Control (p = 0.018) and Sil-Sr-45S5 (p < 0.001) showed µTBS reduction after 6-month aging. Sil-Sr-45S5 showed higher HYP release than that obtained in the 45S5 group. Sil-45S5 showed mineral deposition and increase in µTBS (p = 0.028) after 6-months. All experimental adhesives exhibited higher degree of conversion compared to Control group, except for 45S5. All adhesives created gap-free interfaces, with very low silver impregnation, except for Sil-Sr-45S5. SIGNIFICANCE: The incorporation of silanized 45S5 bioglass into the universal adhesive was advantageous in terms of dentin remineralization, bonding performance and adhesive polymerization. Conversely, Sil-Sr-45S5 compromised the µTBS, interface nanoleakage and had a negative impact on HYP outcomes.


Asunto(s)
Recubrimiento Dental Adhesivo , Cementos Dentales , Humanos , Cementos de Resina/química , Colágeno , Dentina , Resistencia a la Tracción , Recubrimientos Dentinarios/química , Ensayo de Materiales , Adhesivos
10.
Pathogens ; 12(8)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37624012

RESUMEN

Novel approaches for caries lesion removal and treatment have been proposed. This study evaluates the combined use of an experimental ultrasound, aPDT (antimicrobial photodynamic therapy) and bioactive glasses on the removal, decontamination and remineralization of dentin caries lesions. A biological model created with a duo species biofilm (Streptococcus mutans and Lactobacillus acidophilus) was used for the development of a caries-like lesion over the dentin for 7 days. Bovine dentin specimens (4 × 4 × 2 mm) were randomized according to the following caries removal techniques: bur (BUR) or ultrasound (ULT), decontamination (with or without aPDT) and remineralization materials (45S5 or F18 bioactive glasses). The following different groups were investigated: caries lesion (control); sound dentin (control); BUR; BUR + aPDT; ULT; ULT + aPDT; BUR + 45S5, BUR + F18; ULT + 45S5; ULT + F18; BUR + aPDT + 45S5; BUR + aPDT + F18; ULT + aPDT + 45S5; and ULT + aPDT + F18. Transverse microradiography (TMR), cross-sectional microhardness (CSH), FT-Raman spectroscopy and confocal microscopy (CLSM) were performed. A two-way ANOVA and Tukey's test were used (α = 0.05). (3) Results: The TMR revealed a lesion depth of 213.9 ± 49.5 µm and a mineral loss of 4929.3% vol.µm. The CSH increases as a function of depth, regardless of the group (p < 0.05). Removal with BUR (24.40-63.03 KHN) has a greater CSH than ULT (20.01-47.53 KHN; p < 0.05). aPDT did not affect the CSH (p > 0.05). No difference was observed between 45S5 or F18 (p > 0.05), but a change was observed for ULT (p > 0.05). The FT-Raman shows no differences for the phosphate (p > 0.05), but a difference is observed for the carbonate and C-H bonds. The CLSM images show that aPDT effectively inactivates residual bacteria. A combination of ULT, aPDT and bioactive glasses can be a promising minimally invasive treatment.

11.
J Funct Biomater ; 14(6)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37367266

RESUMEN

This study investigated the influence of incorporating Biosilicate® on the physico-mechanical and biological properties of glass ionomer cement (GIC). This bioactive glass ceramic (23.75% Na2O, 23.75% CaO, 48.5% SiO2, and 4% P2O5) was incorporated by weight (5%, 10%, or 15%) into commercially available GICs (Maxxion R and Fuji IX GP). Surface characterization was made by SEM (n = 3), EDS (n = 3), and FTIR (n = 1). The setting and working (S/W time) times (n = 3) and compressive strength (CS) were analyzed (n = 10) according to ISO 9917-1:2007. The ion release (n = 6) was determined and quantified by ICP OES and by UV-Vis for Ca, Na, Al, Si, P, and F. To verify cell cytotoxicity, stem cells from the apical papilla (SCAP) were exposed to eluates (n = 3, at a ratio of 1.8 cm2/mL) and analyzed 24 h post-exposure. Antimicrobial activity against Streptococcus mutans (ATCC 25175, NCTC 10449) was analyzed by direct contact for 2 h (n = 5). The data were submitted for normality and lognormality testing. One-way ANOVA and Tukey's test were applied for the working and setting time, compressive strength, and ion release data. Data from cytotoxicity and antimicrobial activity were submitted for Kruskal-Wallis' testing and Dunn's post hoc test (α = 0.05). Among all experimental groups, only those with 5% (wt) of Biosilicate® showed better surface quality. Only M5% showed a comparable W/S time to the original material (p = 0.7254 and p = 0.5912). CS was maintained for all Maxxion R groups (p > 0.0001) and declined for Fuji IX experimental groups (p < 0.0001). The Na, Si, P, and F ions released were significantly increased for all Maxxion R and Fuji IX groups (p < 0.0001). Cytotoxicity was increased only for Maxxion R with 5% and 10% of Biosilicate®. A higher inhibition of S. mutans growth was observed for Maxxion R with 5% of Biosilicate® (less than 100 CFU/mL), followed by Maxxion R with 10% of Biosilicate® (p = 0.0053) and Maxxion R without the glass ceramic (p = 0.0093). Maxxion R and Fuji IX presented different behaviors regarding Biosilicate® incorporation. The impacts on physico-mechanical and biological properties were different depending on the GIC, but therapeutic ion release was increased for both materials.

12.
J Biomed Mater Res B Appl Biomater ; 110(3): 517-526, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34498810

RESUMEN

Dentin hypersensitivity (DH) is characterized by pain caused by an external stimulus on exposed dentin. Different therapeutic approaches have been proposed to mitigate this problem; however, none of them provide permanent pain relief. In this study, we synthesized and characterized experimental bioactive glasses containing 3.07 mol% SrO or 3.36 mol% K2 O (both equivalent to 5 wt% in the glass), and evaluated their effect on dentin permeability to verify their potential to treat DH. The experimental materials were characterized by field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, micro-Raman spectroscopy, and X-ray diffraction to confirm the respective structures and chemical compositions. The reduction in the hydraulic conductance of dentin was evaluated at the three stages: minimum permeability; maximum permeability (24% ethylenediaminetetraacetic acid [EDTA] treatment); and final dentin permeability after treatment with the bioactive glasses. They all promoted a reduction in dentin permeability, with a significant difference for each sample and posttreatment group. Also, a significant reduction in dentin permeability was observed even after a simulated toothbrushing test, demonstrating effective action of these materials against DH. Besides, incorporating 3.07 mol% SrO was a positive factor. Therefore, strontium's desensitizing and re-mineralizing properties can be further exploited in bioactive glasses to promote a synergistic effect to treat DH.


Asunto(s)
Desensibilizantes Dentinarios , Sensibilidad de la Dentina , Dentina , Desensibilizantes Dentinarios/química , Desensibilizantes Dentinarios/farmacología , Desensibilizantes Dentinarios/uso terapéutico , Permeabilidad de la Dentina , Sensibilidad de la Dentina/terapia , Humanos , Microscopía Electrónica de Rastreo , Potasio/farmacología , Potasio/uso terapéutico , Estroncio/química , Estroncio/farmacología
13.
Dent Mater J ; 41(6): 874-881, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-35934800

RESUMEN

Bioactive glasses have been recommended for the occlusion of dentinal tubules in treating cervical dentin hypersensitivity. This study evaluates an in vivo model of dentin exposure, and tests the efficacy of bioglass treatments. Thirty male Wistar rats received gingival recession surgery on the upper left first molar. The treatments were applied over the surface of the exposed dentin every 4 days for 28 days. The groups were as follows: Naive; Gingival recession; Cavity varnish; Biosilicate®; Strontium bioglass; and Potassium bioglass. Changes in the dentin-pulp complex, and the presence of substance P, were evaluated through hematoxylin-eosin and immunohistochemical staining. The groups had similar results. Teeth with exposed dentinal tubules in rats showed a typical pattern in the dentin-pulp complex and immunotracing for substance P. The materials did not cause pulp damage. The effects of gingival recession and open dentinal tubules on pulp tissue require further clarification.


Asunto(s)
Sensibilidad de la Dentina , Recesión Gingival , Animales , Masculino , Ratas , Dentina , Recesión Gingival/cirugía , Recesión Gingival/complicaciones , Ratas Wistar , Sustancia P/farmacología
14.
J Chem Phys ; 135(19): 194703, 2011 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-22112093

RESUMEN

We collect and critically analyze extensive literature data, including our own, on three important kinetic processes--viscous flow, crystal nucleation, and growth--in lithium disilicate (Li(2)O·2SiO(2)) over a wide temperature range, from above T(m) to 0.98T(g) where T(g) ≈ 727 K is the calorimetric glass transition temperature and T(m) = 1307 K, which is the melting point. We found that crystal growth mediated by screw dislocations is the most likely growth mechanism in this system. We then calculated the diffusion coefficients controlling crystal growth, D(eff)(U), and completed the analyses by looking at the ionic diffusion coefficients of Li(+1), O(2-), and Si(4+) estimated from experiments and molecular dynamic simulations. These values were then employed to estimate the effective volume diffusion coefficients, D(eff)(V), resulting from their combination within a hypothetical Li(2)Si(2)O(5) "molecule". The similarity of the temperature dependencies of 1/η, where η is shear viscosity, and D(eff)(V) corroborates the validity of the Stokes-Einstein/Eyring equation (SEE) at high temperatures around T(m). Using the equality of D(eff)(V) and D(eff)(η), we estimated the jump distance λ ~ 2.70 Å from the SEE equation and showed that the values of D(eff)(U) have the same temperature dependence but exceed D(eff)(η) by about eightfold. The difference between D(eff)(η) and D(eff)(U) indicates that the former determines the process of mass transport in the bulk whereas the latter relates to the mobility of the structural units on the crystal/liquid interface. We then employed the values of η(T) reduced by eightfold to calculate the growth rates U(T). The resultant U(T) curve is consistent with experimental data until the temperature decreases to a decoupling temperature T(d)(U) ≈ 1.1-1.2T(g), when D(eff)(η) begins decrease with decreasing temperature faster than D(eff)(U). A similar decoupling occurs between D(eff)(η) and D(eff)(τ) (estimated from nucleation time-lags) but at a lower temperatureT(d)(τ) ≈ T(g). For T > T(g) the values of D(eff)(τ) exceed D(eff)(η) only by twofold. The different behaviors of D(eff)(τ)(T) and D(eff)(U)(T) are likely caused by differences in the mechanisms of critical nuclei formation. Therefore, we have shown that at low undercoolings, viscosity data can be employed for quantitative analyses of crystal growth rates, but in the deeply supercooled liquid state, mass transport for crystal nucleation and growth are not controlled by viscosity. The origin of decoupling is assigned to spatially dynamic heterogeneity in glass-forming melts.

15.
J Mater Sci Mater Med ; 22(6): 1439-46, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21556979

RESUMEN

This study assessed the antimicrobial activity of a new bioactive glass-ceramic (Biosilicate®) against anaerobic, microaerophilic, and facultative anaerobic microorganisms. Evaluation of the antimicrobial activity was carried out by three methods, namely agar diffusion, direct contact, and minimal inhibitory concentration (MIC). For the agar diffusion technique, bio glass-ceramic activity was observed against various microorganisms, with inhibition haloes ranging from 9.0 ± 1.0 to 22.3 ± 2.1 mm. For the direct contact technique, Biosilicate® displayed activity against all the microorganisms, except for S. aureus. In the first 10 min of contact between the microorganisms and Biosilicate®, there was a drastic reduction in the number of viable cells. Confirming the latter results, MIC showed that the Biosilicate® inhibited the growth of microorganisms, with variations between ≤ 2.5 and 20 mg/ml. The lowest MIC values (7.5 to ≤ 2.5 mg/ml) were obtained for oral microorganisms. In conclusion, Biosilicate® exhibits a wide spectrum of antimicrobial properties, including anaerobic bacteria.


Asunto(s)
Antiinfecciosos/farmacología , Bacterias Anaerobias/efectos de los fármacos , Vidrio , Agar/farmacología , Anaerobiosis/efectos de los fármacos , Anaerobiosis/fisiología , Antiinfecciosos/química , Bacterias Anaerobias/crecimiento & desarrollo , Difusión , Vidrio/análisis , Vidrio/química , Pruebas de Sensibilidad Microbiana , Técnicas Microbiológicas , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo
16.
Mater Sci Eng C Mater Biol Appl ; 118: 111475, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33255054

RESUMEN

Antimicrobial treatment failure has been increasing at alarming rates. In this context, the bactericidal properties of biocompatible antimicrobial agents have been widely studied. F18 is a recently developed bioactive glass that presents a much wider working range when compared to other bioactive glasses, a feature that allows it to be used for coating metallic implants, sintering scaffolds or manufacturing fibers for wound healing applications. The aim of this study was to investigate the in vitro bactericidal and anti-biofilm activity of F18 glass as a powder and as a coating on steel samples, and to explore the effects of its dissolution products at concentrations from 3 mg/mL to 50 mg/mL against the Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) biofilms. Furthermore, we intend to verify whether changes in the medium pH could influence the bactericidal activity of F18. The results indicated that F18 presented bactericidal activity in preformed S. aureus and MRSA biofilms, reducing more than 6 logs of the viable cells that remained in contact with 50 mg/mL for 24 h. Moreover, an anti-biofilm activity was observed after 12 h of direct contact, with a drop of more than 6 logs of the viable bacterial population. Neutralization of the F18 solution pH decreased its bactericidal efficacy. These results indicate that the F18 glass could be considered as an alternative material for controlling and treating infections by S. aureus.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus
17.
J Dent ; 111: 103719, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34118283

RESUMEN

OBJECTIVES: To evaluate obliterating capability and biological performance of desensitizing agents. METHODS: 50 dentin blocks were distributed according to the desensitizing agent used (n = 10): Control (Artificial saliva); Ultra EZ (Ultradent); Desensibilize Nano P (FGM); T5-OH Bioactive Glass (Experimental solution); F18 Bioactive Glass (Experimental solution). Desensitizing treatments were performed for 15 days. In addition, specimens were subjected to acid challenge to simulate oral environment demineralizing conditions. Samples were subjected to permeability analysis before and after desensitizing procedures and acid challenge. Cytotoxicity analysis was performed by using Alamar Blue assay and complemented by total protein quantification by Pierce Bicinchoninic Acid assay at 15 min, 24-h and 48-h time points. Scanning electron microscopy and energy dispersion X-ray spectroscopy were performed for qualitative analysis. Data of dentin permeability was analyzed by two-way repeated measures ANOVA and Tukey's test. For cytotoxicity, Kruskal-Wallis and Newman-Keuls tests. RESULTS: for dentin permeability there was no significant difference among desensitizing agents after treatment, but control group presented highest values (0.131 ± 0.076 Lp). After acid challenge, control group maintained highest values (0.044 ± 0.014 Lp) with significant difference to other groups, except for Desensibilize Nano P (0.037 ± 0.019 Lp). For cytotoxicity, there were no significant differences among groups. CONCLUSION: Bioglass-based desensitizers caused similar effects to commercially available products, regarding permeability and dentin biological properties. CLINICAL SIGNIFICANCE: There is no gold standard protocol for dentin sensitivity. The study of novel desensitizing agents that can obliterate dentinal tubules in a faster-acting and long-lasting way may help meet this clinical need.


Asunto(s)
Desensibilizantes Dentinarios , Sensibilidad de la Dentina , Dentina , Desensibilizantes Dentinarios/farmacología , Permeabilidad de la Dentina , Sensibilidad de la Dentina/tratamiento farmacológico , Humanos , Microscopía Electrónica de Rastreo , Permeabilidad , Saliva Artificial/farmacología , Espectrometría por Rayos X
18.
J Chem Phys ; 133(17): 174701, 2010 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-21054059

RESUMEN

An analysis of the kinetic coefficient of crystal growth U(kin), recently proposed by Ediger et al. [J. Chem. Phys. 128, 034709 (2008)], indicates that the Stokes-Einstein/Eyring (SE/E) equation does not describe the diffusion process controlling crystal growth rates in fragile glass-forming liquids. U(kin) was defined using the normal growth model and tested for crystal data for inorganic and organic liquids covering a viscosity range of about 10(4)-10(12) Pa s. Here, we revisit their interesting finding considering two other models: the screw dislocation (SD) and the two-dimensional surface nucleated (2D) growth models for nine undercooled oxide liquids, in a wider temperature range, from slightly below the melting point down to the glass transition region T(g), thus covering a wider viscosity range: 10(1)-10(13) Pa s. We then propose and use normalized kinetic coefficients (M(kin)) for the SD and 2D growth models. These new kinetic coefficients restore the ability of viscosity to describe the transport part of crystal growth rates (M(kin)∼1/η and ξ∼1) from low to moderate viscosities (η<10(6) Pa s), and thus the SE/E equation works well in this viscosity range for all systems tested. For strong glasses, the SE/E equation works well from low to high viscosities, from the melting point down to T(g)! However, for at least three fragile liquids, diopside (kink at 1.08T(g), η=1.6×10(8) Pa s), lead metasilicate (kink at 1.14T(g), η=4.3×10(6) Pa s), and lithium disilicate (kink at 1.11T(g), η=1.6×10(8) Pa s), there are clear signs of a breakdown of the SE/E equation at these higher viscosities. Our results corroborate the findings of Ediger et al. and demonstrate that viscosity data cannot be used to describe the transport part of the crystal growth (via the SE/E equation) in fragile glasses in the neighborhood of T(g).

19.
Pathogens ; 9(11)2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182533

RESUMEN

Bioactive glass F18 (BGF18), a glass containing SiO2-Na2O-K2O-MgO-CaO-P2O5, is highly effective as an osseointegration buster agent when applied as a coating in titanium implants. Biocompatibility tests using this biomaterial exhibited positive results; however, its antimicrobial activity is still under investigation. In this study we evaluated biofilm formation and expression of virulence-factor-related genes in Candida albicans, Staphylococcus epidermidis, and Pseudomonas aeruginosa grown on surfaces of titanium and titanium coated with BGF18. C. albicans, S. epidermidis, and P. aeruginosa biofilms were grown on specimens for 8, 24, and 48 h. After each interval, the pH was measured and the colony-forming units were counted for the biofilm recovery rates. In parallel, quantitative real-time polymerase chain reactions were carried out to verify the expression of virulence-factor-related genes. Our results showed that pH changes of the culture in contact with the bioactive glass were merely observed. Reduction in biofilm formation was not observed at any of the studied time. However, changes in the expression level of genes related to virulence factors were observed after 8 and 48 h of culture in BGF18. BGF18 coating did not have a clear inhibitory effect on biofilm growth but promoted the modulation of virulence factors.

20.
J Appl Oral Sci ; 28: e20190384, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32520077

RESUMEN

OBJECTIVES: This study evaluated if the use of a bioactive glass-ceramic-based gel, named Biosilicate (BS), before, after or mixed with bleaching gel, could influence the inflammation of the dental pulp tissue of rats' molars undergoing dental bleaching with hydrogen peroxide (H2O2). METHODOLOGY: The upper molars of Wistar rats (Rattus norvegicus, albinus) were divided into Ble: bleached (35% H2O2, 30-min); Ble-BS: bleached and followed by BS-based gel application (20 min); BS-Ble: BS-based gel application and then bleaching; BS/7d-Ble: BS-based gel applications for 7 days and then bleaching; Ble+BS: blend of H2O2 with BS-based gel (1:1, 30-min); and control: placebo gel. After 2 and 30 days (n=10), the rats were euthanized for histological evaluation. The Kruskal-Wallis and Dunn statistical tests were performed (P<0.05). RESULTS: At 2 days, the Ble and Ble-BS groups had significant alterations in the pulp tissue, with an area of necrosis. The groups with the application of BS-based gel before H2O2 had moderate inflammation and partial disorganization in the occlusal third of the coronary pulp and were significantly different from the Ble in the middle and cervical thirds (P<0.05). The most favorable results were observed in the Ble+BS, which was similar to the control in all thirds of the coronary pulp (P>0.05). At 30 days, the pulp tissue was organized and the bleached groups presented tertiary dentin deposition. The Ble group had the highest deposition of tertiary dentin, followed by the Ble-BS, and both were different from control (P<0.05). CONCLUSION: A single BS-based gel application beforehand or BS-based gel blended with a bleaching gel minimize the pulp damage induced by dental bleaching.


Asunto(s)
Pulpa Dental/efectos de los fármacos , Vidrio/química , Peróxido de Hidrógeno/química , Pulpitis/prevención & control , Blanqueadores Dentales/química , Blanqueamiento de Dientes/métodos , Animales , Pulpa Dental/patología , Peróxido de Hidrógeno/efectos adversos , Masculino , Diente Molar , Pulpitis/inducido químicamente , Pulpitis/patología , Distribución Aleatoria , Ratas Wistar , Reproducibilidad de los Resultados , Factores de Tiempo , Blanqueamiento de Dientes/efectos adversos , Blanqueadores Dentales/efectos adversos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA