Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Evol Dev ; 26(3): e12478, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38650470

RESUMEN

The origin of paired appendages became one of the most important adaptations of vertebrates, allowing them to lead active lifestyles and explore a wide range of ecological niches. The basic form of paired appendages in evolution is the fins of fishes. The problem of paired appendages has attracted the attention of researchers for more than 150 years. During this time, a number of theories have been proposed, mainly based on morphological data, two of which, the Balfour-Thacher-Mivart lateral fold theory and Gegenbaur's gill arch theory, have not lost their relevance. So far, however, none of the proposed ideas has been supported by decisive evidence. The study of the evolutionary history of the appearance and development of paired appendages lies at the intersection of several disciplines and involves the synthesis of paleontological, morphological, embryological, and genetic data. In this review, we attempt to summarize and discuss the results accumulated in these fields and to analyze the theories put forward regarding the prerequisites and mechanisms that gave rise to paired fins and limbs in vertebrates.


Asunto(s)
Aletas de Animales , Evolución Biológica , Peces , Animales , Aletas de Animales/anatomía & histología , Aletas de Animales/crecimiento & desarrollo , Peces/anatomía & histología , Peces/genética , Peces/crecimiento & desarrollo , Peces/embriología , Vertebrados/anatomía & histología , Vertebrados/crecimiento & desarrollo , Vertebrados/genética
2.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38397089

RESUMEN

Lamprey homologues of the classic embryonic inducer Noggin are similar in expression pattern and functional properties to Noggin homologues of jawed vertebrates. All noggin genes of vertebrates apparently originated from a single ancestral gene as a result of genome duplications. nogginA, nogginB and nogginC of lampreys, like noggin1 and noggin2 of gnathostomes, demonstrate the ability to induce complete secondary axes with forebrain and eye structures when overexpressed in Xenopus laevis embryos. According to current views, this finding indicates the ability of lamprey Noggin proteins to suppress the activity of the BMP, Nodal/Activin and Wnt/beta-catenin signaling pathways, as shown for Noggin proteins of gnathostomes. In this work, by analogy with experiments in Xenopus embryos, we attempted to induce secondary axes in the European river lamprey Lampetra fluviatilis by injecting noggin mRNAs into lamprey eggs in vivo. Surprisingly, unlike what occurs in amphibians, secondary axis induction in the lampreys either by noggin mRNAs or by chordin and cerberus mRNAs, the inductive properties of which have been described, was not observed. Only wnt8a mRNA demonstrated the ability to induce secondary axes in the lampreys. Such results may indicate that the mechanism of axial specification in lampreys, which represent jawless vertebrates, may differ in detail from that in the jawed clade.


Asunto(s)
Lampreas , Prosencéfalo , Animales , Lampreas/genética , Xenopus laevis/genética , Vía de Señalización Wnt , Genoma , Filogenia
3.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255964

RESUMEN

During gastrulation and neurulation, the chordamesoderm and overlying neuroectoderm of vertebrate embryos converge under the control of a specific genetic programme to the dorsal midline, simultaneously extending along it. However, whether mechanical tensions resulting from these morphogenetic movements play a role in long-range feedback signaling that in turn regulates gene expression in the chordamesoderm and neuroectoderm is unclear. In the present work, by using a model of artificially stretched explants of Xenopus midgastrula embryos and full-transcriptome sequencing, we identified genes with altered expression in response to external mechanical stretching. Importantly, mechanically activated genes appeared to be expressed during normal development in the trunk, i.e., in the stretched region only. By contrast, genes inhibited by mechanical stretching were normally expressed in the anterior neuroectoderm, where mechanical stress is low. These results indicate that mechanical tensions may play the role of a long-range signaling factor that regulates patterning of the embryo, serving as a link coupling morphogenesis and cell differentiation.


Asunto(s)
4-Butirolactona , Animales , Estrés Mecánico , Xenopus laevis/genética , Expresión Génica
4.
Int J Mol Sci ; 23(10)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35628438

RESUMEN

Zyxin is an LIM-domain-containing protein that regulates the assembly of F-actin filaments in cell contacts. Additionally, as a result of mechanical stress, Zyxin can enter nuclei and regulate gene expression. Previously, we found that Zyxin could affect mRNA stability of the maternally derived stemness factors of Pou5f3 family in Xenopus laevis embryos through binding to Y-box factor1. In the present work, we demonstrate that Zyxin can also affect mRNA stability of the maternally derived retinoid receptor Rxrγ through the same mechanism. Moreover, we confirmed the functional link between Zyxin and Rxrγ-dependent gene expression. As a result, Zyxin appears to play an essential role in the regulation of the retinoic acid signal pathway during early embryonic development. Besides, our research indicates that the mechanism based on the mRNA destabilization by Zyxin may take part in the control of the expression of a fairly wide range of maternal genes.


Asunto(s)
ARN Mensajero Almacenado , Tretinoina , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Receptor gamma X Retinoide , Transducción de Señal , Tretinoina/farmacología , Zixina/genética , Zixina/metabolismo
5.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36012515

RESUMEN

The orphan insulin receptor-related receptor (IRR) encoded by insrr gene is the third member of the insulin receptor family, also including the insulin receptor (IR) and the insulin-like growth factor receptor (IGF-1R). IRR is the extracellular alkaline medium sensor. In mice, insrr is expressed only in small populations of cells in specific tissues, which contain extracorporeal liquids of extreme pH. In particular, IRR regulates the metabolic bicarbonate excess in the kidney. In contrast, the role of IRR during Xenopus laevis embryogenesis is unknown, although insrr is highly expressed in frog embryos. Here, we examined the insrr function during the Xenopus laevis early development by the morpholino-induced knockdown. We demonstrated that insrr downregulation leads to development retardation, which can be restored by the incubation of embryos in an alkaline medium. Using bulk RNA-seq of embryos at the middle neurula stage, we showed that insrr downregulation elicited a general shift of expression towards genes specifically expressed before and at the onset of gastrulation. At the same time, alkali treatment partially restored the expression of the neurula-specific genes. Thus, our results demonstrate the critical role of insrr in the regulation of the early development rate in Xenopus laevis.


Asunto(s)
Desarrollo Embrionario , Receptor de Insulina , Proteínas de Xenopus , Animales , Desarrollo Embrionario/genética , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptores de Somatomedina/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
6.
Proc Natl Acad Sci U S A ; 115(50): 12728-12732, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30478037

RESUMEN

Bioluminescence is found across the entire tree of life, conferring a spectacular set of visually oriented functions from attracting mates to scaring off predators. Half a dozen different luciferins, molecules that emit light when enzymatically oxidized, are known. However, just one biochemical pathway for luciferin biosynthesis has been described in full, which is found only in bacteria. Here, we report identification of the fungal luciferase and three other key enzymes that together form the biosynthetic cycle of the fungal luciferin from caffeic acid, a simple and widespread metabolite. Introduction of the identified genes into the genome of the yeast Pichia pastoris along with caffeic acid biosynthesis genes resulted in a strain that is autoluminescent in standard media. We analyzed evolution of the enzymes of the luciferin biosynthesis cycle and found that fungal bioluminescence emerged through a series of events that included two independent gene duplications. The retention of the duplicated enzymes of the luciferin pathway in nonluminescent fungi shows that the gene duplication was followed by functional sequence divergence of enzymes of at least one gene in the biosynthetic pathway and suggests that the evolution of fungal bioluminescence proceeded through several closely related stepping stone nonluminescent biochemical reactions with adaptive roles. The availability of a complete eukaryotic luciferin biosynthesis pathway provides several applications in biomedicine and bioengineering.


Asunto(s)
Hongos/genética , Proteínas Luminiscentes/genética , Secuencia de Aminoácidos , Animales , Vías Biosintéticas/genética , Ácidos Cafeicos , Línea Celular , Línea Celular Tumoral , Femenino , Duplicación de Gen/genética , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C , Alineación de Secuencia , Xenopus laevis
7.
Genesis ; 57(5): e23293, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30912273

RESUMEN

The Agr family genes, Ag1, Agr2, and Agr3, encode for the thioredoxin domain containing secreted proteins and are specific only for vertebrates. These proteins are attracting increasing attention due to their involvement in many physiological and pathological processes, including exocrine secretion, cancer, regeneration of the body appendages, and the early brain development. At the same time, the mode by which Agrs regulate intracellular processes are poorly understood. Despite that the receptor to Agr2, the membrane anchored protein Prod1, has been firstly discovered in Urodeles, and it has been shown to interact with Agr2 in the regenerating limb, no functional homologs of Prod1 were identified in other vertebrates. This raises the question of the mechanisms by which Agrs can regulate regeneration in other lower vertebrates. Recently, we have identified that Tfp4 (three-fingers Protein 4), the structural and functional homolog of Prod1 in Anurans, interacts with Agr2 in Xenopus laevis embryos. In the present work we show by several methods that the activity of Tfp4 is essential for the tadpole tail regeneration as well as for the early eye and forebrain development during embryogenesis. These data show for the first time the common molecular mechanism of regeneration regulation in amphibians by interaction of Prod1 and Agr2 proteins.


Asunto(s)
Arginasa/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Regeneración/fisiología , Proteínas de Xenopus/metabolismo , Animales , Proteínas Portadoras/metabolismo , Desarrollo Embrionario , Extremidades/embriología , Larva/genética , Larva/metabolismo , Organogénesis , Unión Proteica/fisiología , Regeneración/genética , Tiorredoxinas/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/metabolismo
8.
Genesis ; 55(4)2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28236362

RESUMEN

Cell movements during embryogenesis produce mechanical tensions that shape the embryo and can also regulate gene expression, thereby affecting cell differentiation. Increasing evidence indicates that mechanosensitive regulation of gene expression plays important roles during embryogenesis by coupling the processes of morphogenesis and differentiation. However, the molecular mechanisms of this phenomenon remain poorly understood. This review focuses on the molecular mechanisms that "translate" mechanical stimuli into gene expression.


Asunto(s)
Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Mecanotransducción Celular , Animales , Humanos , Activación Transcripcional
9.
Biochim Biophys Acta ; 1850(11): 2318-28, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26259819

RESUMEN

BACKGROUND: SypHer is a genetically encoded fluorescent pH-indicator with a ratiometric readout, suitable for measuring fast intracellular pH shifts. However, the relatively low brightness of the indicator limits its use. METHODS: Here we designed a new version of pH-sensor called SypHer-2, which has up to three times brighter fluorescence in cultured mammalian cells compared to the SypHer. RESULTS: Using the new indicator we registered activity-associated pH oscillations in neuronal cell culture. We observed prominent transient neuronal cytoplasm acidification that occurs in parallel with calcium entry. Furthermore, we monitored pH in presynaptic and postsynaptic termini by targeting SypHer-2 directly to these compartments and revealed marked differences in pH dynamics between synaptic boutons and dendritic spines. Finally, we were able to reveal for the first time the intracellular pH drop that occurs within an extended region of the amputated tail of the Xenopus laevis tadpole before it begins to regenerate. CONCLUSIONS: SypHer2 is suitable for quantitative monitoring of pH in biological systems of different scales, from small cellular subcompartments to animal tissues in vivo. GENERAL SIGNIFICANCE: The new pH-sensor will help to investigate pH-dependent processes in both in vitro and in vivo studies.


Asunto(s)
Concentración de Iones de Hidrógeno , Neurociencias , Regeneración/fisiología , Animales , Calcio/metabolismo , Fluorescencia , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Radiometría , Xenopus laevis/fisiología
10.
Biochem Biophys Res Commun ; 468(1-2): 331-6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26525852

RESUMEN

Heparin binding motifs were found in many secreted proteins and it was suggested that they are responsible for retardation of the protein diffusion within the intercellular space due to the binding to heparan sulfate proteoglycanes (HSPG). Here we used synthetic FITC labeled heparin binding motif (HBM peptide) of the Xenopus laevis secreted BMP inhibitor Noggin1 to study its diffusion along the surface of the heparin beads by FRAP method. As a result, we have found out that diffusivity of HBM-labeled FITC was indeed much lesser than those predicted by theoretical calculations even for whole protein of the Noggin size. We also compared by isothermal titration calorimetry the binding affinity of HBM and the control oligolysine peptide to several natural polyanions including heparan sulfate (HS), heparin, the bacterial dextran sulfate and salmon sperm DNA, and demonstrated that HBM significantly exceeds oligolysine peptide in the affinity to HS, heparin and DNA. By contrast, oligolysine peptide bound with higher affinity to dextran sulfate. We speculate that such a difference may ensure specificity of the morphogen binding to HSPG and could be explained by steric constrains imposed by different distribution of the negative charges along a given polymeric molecule. Finally, by using EGFP-HBM recombinant protein we have visualized the natural pattern of the Noggin1 binding sites within the X. laevis gastrula and demonstrated that these sites forms a dorsal-ventral concentration gradient, with a maximum in the dorsal blastopore lip. In sum, our data provide a quantitative basis for modeling the process of Noggin1 diffusion in embryonic tissues, considering its interaction with HSPG.


Asunto(s)
Proteínas Portadoras/metabolismo , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/embriología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/análisis , Recuperación de Fluorescencia tras Fotoblanqueo , Gástrula/ultraestructura , Datos de Secuencia Molecular , Xenopus/metabolismo , Proteínas de Xenopus/análisis
11.
Dev Biol ; 380(1): 37-48, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23685334

RESUMEN

Zyxin is a cytoskeletal protein that controls cell movements by regulating actin filaments assembly, but it can also modulate gene expression owing to its interactions with the proteins involved in signaling cascades. Therefore, identification of proteins that interact with Zyxin in embryonic cells is a promising way to unravel mechanisms responsible for coupling of two major components of embryogenesis: morphogenetic movements and cell differentiation. Now we show that in Xenopus laevis embryos Zyxin can bind to and suppress activity of the primary effector of Sonic hedgehog (Shh) signaling cascade, the transcription factor Gli1. By using loss- and gain-of-function approaches, we demonstrate that Zyxin is essential for reduction of Shh signaling within the dorsal part of the neural tube of X. laevis embryo. Thus, our finding discloses a novel function of Zyxin in fine tuning of the central neural system patterning which is based on the ventral-to-dorsal gradient of Shh signaling.


Asunto(s)
Sistema Nervioso Central/embriología , Proteínas Hedgehog/metabolismo , Proteínas Oncogénicas/metabolismo , Transactivadores/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Zixina/metabolismo , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Neuronas/metabolismo , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Transducción de Señal , Técnicas del Sistema de Dos Híbridos , Proteína con Dedos de Zinc GLI1
12.
Development ; 138(24): 5345-56, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22071106

RESUMEN

The secreted protein Noggin1 is an embryonic inducer that can sequester TGFß cytokines of the BMP family with extremely high affinity. Owing to this function, ectopic Noggin1 can induce formation of the headless secondary body axis in Xenopus embryos. Here, we show that Noggin1 and its homolog Noggin2 can also bind, albeit less effectively, to ActivinB, Nodal/Xnrs and XWnt8, inactivation of which, together with BMP, is essential for the head induction. In support of this, we show that both Noggin proteins, if ectopically produced in sufficient concentrations in Xenopus embryo, can induce a secondary head, including the forebrain. During normal development, however, Noggin1 mRNA is translated in the presumptive forebrain with low efficiency, which provides the sufficient protein concentration for only its BMP-antagonizing function. By contrast, Noggin2, which is produced in cells of the anterior margin of the neural plate at a higher concentration, also protects the developing forebrain from inhibition by ActivinB and XWnt8 signaling. Thus, besides revealing of novel functions of Noggin proteins, our findings demonstrate that specification of the forebrain requires isolation of its cells from BMP, Activin/Nodal and Wnt signaling not only during gastrulation but also at post-gastrulation stages.


Asunto(s)
Activinas/metabolismo , Proteínas Portadoras/metabolismo , Vía de Señalización Wnt , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mesodermo/metabolismo , Placa Neural/metabolismo , Prosencéfalo/crecimiento & desarrollo , Prosencéfalo/metabolismo , Unión Proteica , Proteínas Wnt/metabolismo , Xenopus/embriología , Xenopus/metabolismo , Proteínas de Xenopus/metabolismo
13.
Sci Rep ; 14(1): 3805, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360907

RESUMEN

Secreted proteins of the Noggin family serve as pivotal regulators of early development and cell differentiation in all multicellular animals, including vertebrates. Noggin1 was identified first among all Noggins. Moreover, it was described as the first known embryonic inducer specifically secreted by the Spemann organizer and capable of inducing a secondary body axis when expressed ectopically. In the classical default model of neural induction, Noggin1 is presented as an antagonist of BMP signalling, playing a role as a neural inducer. Additionally, Noggin1 is involved in the dorsalization of embryonic mesoderm and later controls the differentiation of various tissues, including muscles, bones, and neural crest derivatives. Hitherto, noggin1 was found in all studied vertebrates. Here, we report the loss of noggin1 in elasmobranchs (sharks, rays and skates), which is a unique case among vertebrates. noggin2 and noggin4 retained in this group and studied in the embryos of the grey bamboo shark Chiloscyllium griseum revealed similarities in expression patterns and functional properties with their orthologues described in other vertebrates. The loss of noggin1 in elasmobranchs may be associated with histological features of the formation of their unique internal cartilaginous skeleton, although additional research is required to establish functional connections between these events.


Asunto(s)
Sistema Nervioso , Tiburones , Animales , Sistema Nervioso/metabolismo , Proteínas/metabolismo , Desarrollo Embrionario/genética , Diferenciación Celular
14.
Biol Rev Camb Philos Soc ; 99(5): 1868-1888, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38817123

RESUMEN

The ability to regenerate large body appendages is an ancestral trait of vertebrates, which varies across different animal groups. While anamniotes (fish and amphibians) commonly possess this ability, it is notably restricted in amniotes (reptiles, birds, and mammals). In this review, we explore the factors contributing to the loss of regenerative capabilities in amniotes. First, we analyse the potential negative impacts on appendage regeneration caused by four evolutionary innovations: advanced immunity, skin keratinization, whole-body endothermy, and increased body size. These innovations emerged as amniotes transitioned to terrestrial habitats and were correlated with a decline in regeneration capability. Second, we examine the role played by the loss of regeneration-related enhancers and genes initiated by these innovations in the fixation of an inability to regenerate body appendages at the genomic level. We propose that following the cessation of regenerative capacity, the loss of highly specific regeneration enhancers could represent an evolutionarily neutral event. Consequently, the loss of such enhancers might promptly follow the suppression of regeneration as a side effect of evolutionary innovations. By contrast, the loss of regeneration-related genes, due to their pleiotropic functions, would only take place if such loss was accompanied by additional evolutionary innovations that compensated for the loss of pleiotropic functions unrelated to regeneration, which would remain even after participation of these genes in regeneration was lost. Through a review of the literature, we provide evidence that, in many cases, the loss in amniotes of genes associated with body appendage regeneration in anamniotes was significantly delayed relative to the time when regenerative capability was lost. We hypothesise that this delay may be attributed to the necessity for evolutionary restructuring of developmental mechanisms to create conditions where the loss of these genes was a beneficial innovation for the organism. Experimental investigation of the downregulation of genes involved in the regeneration of body appendages in anamniotes but absent in amniotes offers a promising avenue to uncover evolutionary innovations that emerged from the loss of these genes. We propose that the vast majority of regeneration-related genes lost in amniotes (about 150 in humans) may be involved in regulating the early stages of limb and tail regeneration in anamniotes. Disruption of this stage, rather than the late stage, may not interfere with the mechanisms of limb and tail bud development during embryogenesis, as these mechanisms share similarities with those operating in the late stage of regeneration. Consequently, the most promising approach to restoring regeneration in humans may involve creating analogs of embryonic limb buds using stem cell-based tissue-engineering methods, followed by their transfer to the amputation stump. Due to the loss of many genes required specifically during the early stage of regeneration, this approach may be more effective than attempting to induce both early and late stages of regeneration directly in the stump itself.


Asunto(s)
Evolución Biológica , Regeneración , Vertebrados , Animales , Vertebrados/fisiología , Vertebrados/genética , Regeneración/genética , Regeneración/fisiología , Extremidades/fisiología
15.
Nat Methods ; 7(10): 827-9, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20818379

RESUMEN

Fluorescent proteins with emission wavelengths in the near-infrared and infrared range are in high demand for whole-body imaging techniques. Here we report near-infrared dimeric fluorescent proteins eqFP650 and eqFP670. To our knowledge, eqFP650 is the brightest fluorescent protein with emission maximum above 635 nm, and eqFP670 displays the most red-shifted emission maximum and high photostability.


Asunto(s)
Biotecnología/métodos , Proteínas Luminiscentes , Imagen de Cuerpo Entero/métodos , Secuencia de Aminoácidos , Animales , Biotecnología/instrumentación , Embrión no Mamífero/citología , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Células HeLa , Humanos , Rayos Infrarrojos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/toxicidad , Ratones , Datos de Secuencia Molecular , Multimerización de Proteína , Estabilidad Proteica , Alineación de Secuencia , Transfección , Xenopus laevis/genética , Xenopus laevis/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
16.
FEBS J ; 290(1): 66-72, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-34854244

RESUMEN

The Lim-domain protein Zyxin was initially identified as a minor actin cytoskeleton protein that regulates the assembly and repair of actin filaments. At the same time, additional functions revealed for Zyxin in recent decades indicate that this protein can also play an important role in regulating gene expression and cell differentiation. In this review, we analysed the data in the literature pointing to Zyxin as one of the possible molecular hubs linking morphogenetic cell movements with gene expression, stem cell status regulation and pattern formation during the most complex processes in organism life, embryogenesis.


Asunto(s)
Proteínas del Citoesqueleto , Citoesqueleto , Zixina/genética , Zixina/metabolismo , Citoesqueleto/metabolismo , Estructura Terciaria de Proteína , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Movimiento Celular
17.
Front Cell Dev Biol ; 11: 1321317, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38229883

RESUMEN

Foxg1 is a key regulator of the early development of the vertebrate forebrain and sensory organs. In this study, we describe for the first time three foxg1 paralogues in lamprey, representative of one of two basally diverged lineages of vertebrates-the agnathans. We also first describe three foxg1 genes in sterlet-representative of one of the evolutionarily ancient clades of gnathostomes. According to the analysis of local genomic synteny, three foxg1 genes of agnathans and gnathostomes have a common origin as a result of two rounds of genomic duplications in the early evolution of vertebrates. At the same time, it is difficult to reliably establish pairwise orthology between foxg1 genes of agnathans and gnathostomes based on the analysis of phylogeny and local genomic synteny, as well as our studies of the spatiotemporal expression of foxg1 genes in the river lamprey Lampetra fluviatilis and the sterlet Acipenser ruthenus. Thus, the appearance of three foxg1 paralogues in agnathans and gnathostomes could have occurred either as a result of two rounds of duplication of the vertebrate common ancestor genome (2R hypothesis) or as a result of the first common round followed by subsequent independent polyploidizations in two evolutionary lineages (1R hypothesis).

18.
Biol Direct ; 18(1): 45, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37568147

RESUMEN

BACKGROUND: It is generally accepted that most evolutionary transformations at the phenotype level are associated either with rearrangements of genomic regulatory elements, which control the activity of gene networks, or with changes in the amino acid contents of proteins. Recently, evidence has accumulated that significant evolutionary transformations could also be associated with the loss/emergence of whole genes. The targeted identification of such genes is a challenging problem for both bioinformatics and evo-devo research. RESULTS: To solve this problem we propose the WINEGRET method, named after the first letters of the title. Its main idea is to search for genes that satisfy two requirements: first, the desired genes were lost/emerged at the same evolutionary stage at which the phenotypic trait of interest was lost/emerged, and second, the expression of these genes changes significantly during the development of the trait of interest in the model organism. To verify the first requirement, we do not use existing databases of orthologs, but rely purely on gene homology and local synteny by using some novel quickly computable conditions. Genes satisfying the second requirement are found by deep RNA sequencing. As a proof of principle, we used our method to find genes absent in extant amniotes (reptiles, birds, mammals) but present in anamniotes (fish and amphibians), in which these genes are involved in the regeneration of large body appendages. As a result, 57 genes were identified. For three of them, c-c motif chemokine 4, eotaxin-like, and a previously unknown gene called here sod4, essential roles for tail regeneration were demonstrated. Noteworthy, we established that the latter gene belongs to a novel family of Cu/Zn-superoxide dismutases lost by amniotes, SOD4. CONCLUSIONS: We present a method for targeted identification of genes whose loss/emergence in evolution could be associated with the loss/emergence of a phenotypic trait of interest. In a proof-of-principle study, we identified genes absent in amniotes that participate in body appendage regeneration in anamniotes. Our method provides a wide range of opportunities for studying the relationship between the loss/emergence of phenotypic traits and the loss/emergence of specific genes in evolution.


Asunto(s)
Mamíferos , Animales
19.
Biochem J ; 435(1): 65-71, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21214518

RESUMEN

Proteins of the GFP (green fluorescent protein) family are widely used as passive reporters for live cell imaging. In the present study we used H2B (histone H2B)-tKR (tandem KillerRed) as an active tool to affect cell division with light. We demonstrated that H2B-tKR-expressing cells behave normally in the dark, but transiently cease proliferation following green-light illumination. Complete light-induced blockage of cell division for approx. 24 h was observed in cultured mammalian cells that were either transiently or stably transfected with H2B-tKR. Illuminated cells then returned to normal division rate. XRCC1 (X-ray cross complementing factor 1) showed immediate redistribution in the illuminated nuclei of H2B-tKR-expressing cells, indicating massive light-induced damage of genomic DNA. Notably, nondisjunction of chromosomes was observed for cells that were illuminated during metaphase. In transgenic Xenopus embryos expressing H2B-tKR under the control of tissue-specific promoters, we observed clear retardation of the development of these tissues in green-light-illuminated tadpoles. We believe that H2B-tKR represents a novel optogenetic tool, which can be used to study mitosis and meiosis progression per se, as well as to investigate the roles of specific cell populations in development, regeneration and carcinogenesis in vivo.


Asunto(s)
División Celular/efectos de la radiación , Cromatina/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/metabolismo , Sondas Moleculares/metabolismo , Animales , Animales Modificados Genéticamente/embriología , Animales Modificados Genéticamente/metabolismo , Núcleo Celular/metabolismo , Cromatina/efectos de la radiación , Daño del ADN/efectos de la radiación , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Embrión no Mamífero/efectos de la radiación , Proteínas Fluorescentes Verdes/genética , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Luz , Proteínas Luminiscentes/genética , Sondas Moleculares/genética , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/ultraestructura , Transporte de Proteínas/efectos de la radiación , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X , Xenopus laevis
20.
Dev Cell ; 57(1): 95-111.e12, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34919801

RESUMEN

How embryos scale patterning according to size is still not fully understood. Through in silico screening and analysis of reaction-diffusion systems that could be responsible for scaling, we predicted the existence of genes whose expression is sensitive to embryo size and which regulate the scaling of embryonic patterning. To find these scalers, we identified genes with strongly altered expression in half-size Xenopus laevis embryos compared with full-size siblings at the gastrula stage. Among found genes, we investigated the role of matrix metalloproteinase-3 (mmp3), which was most strongly downregulated in half-size embryos. We show that Mmp3 scales dorsal-ventral patterning by degrading the slowly diffusing embryonic inducers Noggin1 and Noggin2 but preventing cleavage of the more rapidly diffusing inducer Chordin via degradation of a Tolloid-type proteinase. In addition to unraveling the mechanism underlying the scaling of dorsal-ventral patterning, this work provides proof of principal for scalers identification in embryos of other species.


Asunto(s)
Tipificación del Cuerpo/genética , Metaloproteinasa 3 de la Matriz/metabolismo , Organizadores Embrionarios/metabolismo , Animales , Tipificación del Cuerpo/fisiología , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Portadoras/metabolismo , Tamaño de la Célula , Embrión no Mamífero/metabolismo , Gástrula/metabolismo , Glicoproteínas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metaloproteinasa 3 de la Matriz/fisiología , Transducción de Señal/fisiología , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA