Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pathogens ; 13(2)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38392909

RESUMEN

Antibiotic-resistant, facultative pathogenic bacteria are commonly found in surface water; however, the factors influencing the spread and stabilization of antibiotic resistance in this habitat, particularly the role of biofilms, are not fully understood. The extent to which bacterial populations in biofilms or sediments exacerbate the problem for specific antibiotic classes or more broadly remains unanswered. In this study, we investigated the differences between the bacterial populations found in the surface water and sediment/biofilm of the Mur River and the Drava River in Austria. Samples of Escherichia coli were collected from both the water and sediment at two locations per river: upstream and downstream of urban areas that included a sewage treatment plant. The isolates were subjected to antimicrobial susceptibility testing against 21 antibiotics belonging to seven distinct classes. Additionally, isolates exhibiting either extended-spectrum beta-lactamase (ESBL) or carbapenemase phenotypes were further analyzed for specific antimicrobial resistance genes. E. coli isolates collected from all locations exhibited resistance to at least one of the tested antibiotics; on average, isolates from the Mur and Drava rivers showed 25.85% and 23.66% resistance, respectively. The most prevalent resistance observed was to ampicillin, amoxicillin-clavulanic acid, tetracycline, and nalidixic acid. Surprisingly, there was a similar proportion of resistant bacteria observed in both open water and sediment samples. The difference in resistance levels between the samples collected upstream and downstream of the cities was minimal. Out of all 831 isolates examined, 13 were identified as carrying ESBL genes, with 1 of these isolates also containing the gene for the KPC-2 carbapenemase. There were no significant differences between the biofilm (sediment) and open water samples in the occurrence of antibiotic resistance. For the E. coli populations in the examined rivers, the different factors in water and the sediment do not appear to influence the stability of resistance. No significant differences in antimicrobial resistance were observed between the bacterial populations collected from the biofilm (sediment) and open-water samples in either river. The different factors in water and the sediment do not appear to influence the stability of resistance. The minimal differences observed upstream and downstream of the cities could indicate that the river population already exhibits generalized resistance.

2.
Int J Hyg Environ Health ; 258: 114361, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552533

RESUMEN

Antimicrobial resistance (AMR) poses a major threat to human health worldwide. AMR can be introduced into natural aquatic ecosystems, for example, from clinical facilities via wastewater emissions. Understanding AMR patterns in environmental populations of bacterial pathogens is important to elucidate propagation routes and develop mitigation strategies. In this study, AMR patterns of Escherichia coli isolates from urinary tract infections and colonised urinary catheters of inpatients and outpatients were compared to isolates from the Danube River within the same catchment in Austria to potentially link environmental with clinical resistance patterns. Susceptibility to 20 antibiotics was tested for 697 patient, 489 water and 440 biofilm isolates. The resistance ratios in patient isolates were significantly higher than in the environmental isolates and higher resistance ratios were found in biofilm in comparison to water isolates. The role of the biofilm as potential sink of resistances was reflected by two extended-spectrum beta-lactamase (ESBL) producing isolates in the biofilm while none were found in water, and by higher amoxicillin/clavulanic acid resistance ratios in biofilm compared to patient isolates. Although, resistances to last-line antibiotics such as carbapenems and tigecycline were found in the patient and in the environmental isolates, they still occurred at low frequency.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Humanos , Antibacterianos/farmacología , Aguas Residuales , Austria , Ríos/microbiología , Ecosistema , beta-Lactamasas , Agua , Biopelículas , Infecciones por Escherichia coli/microbiología , Pruebas de Sensibilidad Microbiana
3.
Pathogens ; 13(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38787264

RESUMEN

Multidrug-resistant (MDR) bacteria of the utmost importance are extended-spectrum ß-lactamase (ESBL) and carbapenemase-producing Enterobacterales (CRE), carbapenem-resistant Acinetobacter baumannii (CRAB), carbapenem-resistant Pseudomonas aeruginosa (CRPA), methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus spp. (VRE). In this study, an evaluation of MDR bacteria in surgical intensive care units in a tertiary referral hospital was conducted. The study aimed to characterize ß-lactamases and other resistance traits of Gram-negative bacteria isolated in surgical intensive care units (ICUs). Disk diffusion and the broth dilution method were used for antibiotic susceptibility testing, whereas ESBL screening was performed through a double disk synergy test and an inhibitor-based test with clavulanic acid. A total of 119 MDR bacterial isolates were analysed. ESBL production was observed in half of the Proteus mirabilis, 90% of the Klebsiella pneumoniae and all of the Enterobacter cloacae and Escherichia coli isolates. OXA-48 carbapenemase, carried by the L plasmid, was detected in 34 K. pneumoniae and one E. coli and Enterobacter cloacae complex isolates, whereas NDM occurred sporadically and was identified in three K. pneumoniae isolates. OXA-48 positive isolates coharboured ESBLs belonging to the CTX-M family in all but one isolate. OXA-23 carbapenemase was confirmed in all A. baumannii isolates. The findings of this study provide valuable insight of resistance determinants of Enterobacterales and A. baumannii which will enhance surveillance and intervention strategies that are necessary to curb the ever-growing carbapenem resistance rates.

4.
Water Res ; 252: 121244, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38340455

RESUMEN

The global spread of antimicrobial resistance (AMR) in the environment is a growing health threat. Large rivers are of particular concern as they are highly impacted by wastewater discharge while being vital lifelines serving various human needs. A comprehensive understanding of occurrence, spread and key drivers of AMR along whole river courses is largely lacking. We provide a holistic approach by studying spatiotemporal patterns and hotspots of antibiotic resistance genes (ARGs) along 2311 km of the navigable Danube River, combining a longitudinal and temporal monitoring campaign. The integration of advanced faecal pollution diagnostics and environmental and chemical key parameters allowed linking ARG concentrations to the major pollution sources and explaining the observed patterns. Nine AMR markers, including genes conferring resistance to five different antibiotic classes of clinical and environmental relevance, and one integrase gene were determined by probe-based qPCR. All AMR targets could be quantified in Danube River water, with intI1 and sul1 being ubiquitously abundant, qnrS, tetM, blaTEM with intermediate abundance and blaOXA-48like, blaCTX-M-1 group, blaCTX-M-9 group and blaKPC genes with rare occurrence. Human faecal pollution from municipal wastewater discharges was the dominant factor shaping ARG patterns along the Danube River. Other significant correlations of specific ARGs were observed with discharge, certain metals and pesticides. In contrast, intI1 was not associated with wastewater but was already established in the water microbiome. Animal contamination was detected only sporadically and was correlated with ARGs only in the temporal sampling set. During temporal monitoring, an extraordinary hotspot was identified emphasizing the variability within natural waters. This study provides the first comprehensive baseline concentrations of ARGs in the Danube River and lays the foundation for monitoring future trends and evaluating potential reduction measures. The applided holistic approach proved to be a valuable methodological contribution towards a better understanding of the environmental occurrence of AMR.


Asunto(s)
Genes Bacterianos , Ríos , Animales , Humanos , Antibacterianos/farmacología , Antibacterianos/análisis , Aguas Residuales , Farmacorresistencia Microbiana/genética , Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA