RESUMEN
Staphylococcus aureus is a pathogen that causes significant morbidity and mortality. Nasal carriage is a major source of transmission and of endogenous infection. Persistent carriage is detected in â¼30% of healthy individuals. While Th17 cells have been shown to play a role in S. aureus infection and clearance, the immune response to carriage is not well understood. Here, we evaluate the Th17 response and its potential inhibitors during S. aureus carriage. We recruited 25 volunteers, of whom 11 were persistent carriers. Volunteers' peripheral blood mononuclear cells (PBMCs) were stimulated with either their endogenous strain (a strain isolated from that carrier) or exogenous ones (strains not carried by that volunteer). Changes in Th17 cell frequency and numbers, interleukin-17 (IL-17) mRNA expression, and IL-17 protein abundance were measured by fluorescence-activated cell sorting, real-time PCR, and enzyme-linked immunosorbent assay. Similarly, responses of IL-17 suppressors (regulatory T cells [FOXP3], IL-10, IL-27, and IL-19) were measured. Th17 and IL-17 levels in response to stimulation with endogenous strains were significantly lower than those in response to stimulation with exogenous ones. Of the suppressive cytokines tested, only IL-19 exhibited a stronger response to endogenous than to exogenous strains. Addition of recombinant IL-19 to exogenous-strain-stimulated PBMCs caused decreased IL-17 expression, whereas addition of IL-19 antibodies to endogenous-strain-stimulated cells resulted in an increased IL-17 response. Together, our results suggest that S. aureus carriage induced a tolerogenic response to a carried strain that could be reproduced through the addition of recombinant IL-19 or prevented by the addition of IL-19 antibodies. This differential immune response may play a role in the determination of S. aureus carriage patterns.
Asunto(s)
Interleucina-17/inmunología , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/crecimiento & desarrollo , Adulto , Portador Sano/inmunología , Portador Sano/microbiología , Femenino , Humanos , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-17/genética , Interleucinas/genética , Interleucinas/inmunología , Leucocitos Mononucleares/inmunología , Masculino , Persona de Mediana Edad , Mucosa Nasal/metabolismo , Mucosa Nasal/microbiología , Especificidad de la Especie , Infecciones Estafilocócicas/genética , Staphylococcus aureus/genética , Staphylococcus aureus/fisiología , Células Th17/inmunología , Adulto JovenRESUMEN
A 57-year-old female presented with sudden shortness of breath and migratory pulmonary infiltrates on imaging, which corresponds with a diagnosis of cryptogenic organizing pneumonia. Initial treatment with corticosteroids showed only mild improvement during follow-up. BAL was performed and revealed diffuse alveolar hemorrhage. Immune testing showed positive P-ANCA with positive MPO, leading to a diagnosis of microscopic polyangiitis.
RESUMEN
OBJECTIVE: To assess the impact of laquinimod treatment on monocytes and to investigate the underlying immunomodulatory mechanisms in MS. METHODS: In this cross-sectional study, we performed in vivo and in vitro analyses of cluster of differentiation (CD14+) monocytes isolated from healthy donors (n = 15), untreated (n = 13), and laquinimod-treated patients with MS (n = 14). Their frequency and the expression of surface activation markers were assessed by flow cytometry and the viability by calcein staining. Cytokine concentrations in the supernatants of lipopolysaccharide (LPS)-stimulated monocytes were determined by flow cytometry. The messenger ribonucleic acid (mRNA) expression level of genes involved in cytokine expression was measured by quantitative PCR. The LPS-mediated nuclear factor kappa-light-chain-enhancer of activated B-cell (NF-κB) activation was determined by the quantification of the phosphorylation level of the p65 subunit. Laquinimod-treated monocytes were cocultured with CD4+ T cells, and the resulting cytokine production was analyzed by flow cytometry after intracellular cytokine staining. The interleukin (IL)-17A concentration of the supernatant was assessed by ELISA. RESULTS: Laquinimod did not alter the frequency or viability of circulating monocytes, but led to an upregulation of CD86 expression. LPS-stimulated monocytes of laquinimod-treated patients with MS secreted less IL-1ß following a downregulation of IL-1ß gene expression. Phosphorylation levels of the NF-κB p65 subunit were reduced after laquinimod treatment, indicating a laquinimod-associated inhibition of the NF-κB pathway. T cells primed with laquinimod-treated monocytes differentiated significantly less into IL-17A-producing T helper (Th)-17 cells. CONCLUSIONS: Our findings suggest that inhibited NF-κB signaling and downregulation of IL-1ß expression in monocytes contributes to the immunomodulatory effects of laquinimod and that the impairment of Th17 polarization might mediate its disease-modifying activity in MS.
Asunto(s)
Interleucina-1beta/inmunología , Monocitos/efectos de los fármacos , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Quinolonas/uso terapéutico , Células Th17/inmunología , Adulto , Estudios Transversales , Femenino , Humanos , Interleucina-1beta/metabolismo , Activación de Linfocitos/efectos de los fármacos , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Esclerosis Múltiple Recurrente-Remitente/inmunología , Transducción de Señal/efectos de los fármacosRESUMEN
OBJECTIVE: RasGTPases are master regulators of multiple intracellular signaling cascades. Perturbation of this pathway has been implicated in the pathogenesis of rheumatoid arthritis (RA). In this study we aimed to define the therapeutic potential of a novel RasGTPases inhibitor, farnesylthiosalicylate (FTS), in the preclinical mouse model of collagen-induced arthritis (CIA) and better delineate its immunomodulatory effects both ex vivo and in the mouse. METHODS: We analyzed in vitro the immunomodulatory effects of FTS on various CD4+ T-cell functions such as activation, proliferation, T-helper polarization, and production of proinflammatory cytokines. Using the CIA model, we further determined the efficacy of FTS to inhibit clinical, histopathologic, and diverse immunological outcomes of arthritis. RESULTS: FTS treatment of CD4+ T cells in vitro effectively targeted distinct kinases (extracellular signal-regulated kinase 1/2, p38, protein kinase B/AKT, and mammalian target of rapamycin), the production of interleukin (IL)-17A, IL-22, and granulocyte-macrophage colony-stimulating factor, and Th17 polarization. FTS therapy in the mouse CIA model significantly reduced clinical disease severity and joint inflammation/damage by histology. Importantly, FTS suppressed the in vivo induction of splenic IL-17+ IL-22+ Th17 cells and the secretion of proinflammatory cytokines. The production of pathogenic autoantibodies and their abnormal hyposialylation was significantly attenuated by FTS therapy. Importantly, in vivo generation of collagen type-II specific effector CD4+ T cells was likewise repressed by FTS therapy. CONCLUSION: The RasGTPases inhibitor FTS attenuates the production of proinflammatory cytokines by in vitro-activated T cells and is a potent immunomodulatory compound in the CIA model, primarily targeting the generation of autoreactive Th17 cells and the production of autoantibodies and their subsequent pathogenic hyposialylation.
RESUMEN
IL-22 is a potent pro-inflammatory cytokine upregulated in psoriasis and in other inflammatory diseases. The function of IL-22 is regulated by the soluble scavenging receptor, IL-22 binding protein (IL-22BP or IL-22RA2). However, the role and regulation of IL-22BP itself in the pathogenesis of inflammatory disease remain unclear. We used the TLR7 agonist Imiquimod (IMQ) to induce a psoriasis-like skin disease in mice and found a strong downregulation of IL-22BP in the affected skin as well as in the lymph nodes of animals treated with IMQ. We also analysed psoriatic skin of patients and compared this to skin of healthy donors. Interestingly, IL-22BP expression was similarly downregulated in skin biopsies of psoriasis patients compared to the skin of healthy donors. Since IL-22BP is expressed foremost in dendritic cells, we characterized its expression in monocyte-derived dendritic cells (MoDC) during maturation. In this way, we found Prostaglandin E2 (PGE2) to be a potent suppressor of IL-22BP expression in vitro. We conclude that regulation of IL-22BP by inflammatory mediators is an important step for the progression of inflammation in the skin and possibly also in other autoimmune diseases.
Asunto(s)
Psoriasis/inmunología , Receptores de Interleucina/inmunología , Animales , Células Cultivadas , Células Dendríticas/inmunología , Células Dendríticas/patología , Dinoprostona/análisis , Dinoprostona/inmunología , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Psoriasis/patología , Receptores de Interleucina/análisis , Piel/inmunología , Piel/patologíaRESUMEN
The Ras family of GTPases plays an important role in signaling nodes downstream to T cell receptor and CD28 activation, potentially lowering the threshold for T-cell receptor activation by autoantigens. Somatic mutation in NRAS or KRAS may cause a rare autoimmune disorder coupled with abnormal expansion of lymphocytes. T cells from rheumatoid arthritis (RA) patients show excessive activation of Ras/MEK/ERK pathway. The small molecule farnesylthiosalicylic acid (FTS) interferes with the interaction between Ras GTPases and their prenyl-binding chaperones to inhibit proper plasma membrane localization. In the present study, we tested the therapeutic and immunomodulatory effects of FTS and its derivative 5-fluoro-FTS (F-FTS) in the rat adjuvant-induced arthritis model (AIA). We show that AIA severity was significantly reduced by oral FTS and F-FTS treatment compared to vehicle control treatment. FTS was as effective as the mainstay anti-rheumatic drug methotrexate, and combining the two drugs significantly increased efficacy compared to each drug alone. We also discovered that FTS therapy inhibited both the CFA-driven in vivo induction of Th17 and IL-17/IFN-γ producing "double positive" as well as the upregulation of serum levels of the Th17-associated cytokines IL-17A and IL-22. By gene microarray analysis of effector CD4+ T cells from CFA-immunized rats, re-stimulated in vitro with the mycobacterium tuberculosis heat-shock protein 65 (Bhsp65), we determined that FTS abrogated the Bhsp65-induced transcription of a large list of genes (e.g., Il17a/f, Il22, Ifng, Csf2, Lta, and Il1a). The functional enrichment bioinformatics analysis showed significant overlap with predefined gene sets related to inflammation, immune system processes and autoimmunity. In conclusion, FTS and F-FTS display broad immunomodulatory effects in AIA with inhibition of the Th17-type response to a dominant arthritogenic antigen. Hence, targeting Ras signal-transduction cascade is a potential novel therapeutic approach for RA.
RESUMEN
Arrival of encephalitogenic T cells at inflammatory foci represents a critical step in development of experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. EBI2 and its ligand, 7α,25-OHC, direct immune cell localization in secondary lymphoid organs. CH25H and CYP7B1 hydroxylate cholesterol to 7α,25-OHC. During EAE, we found increased expression of CH25H by microglia and CYP7B1 by CNS-infiltrating immune cells elevating the ligand concentration in the CNS. Two critical pro-inflammatory cytokines, interleukin-23 (IL-23) and interleukin-1 beta (IL-1ß), maintained expression of EBI2 in differentiating Th17 cells. In line with this, EBI2 enhanced early migration of encephalitogenic T cells into the CNS in a transfer EAE model. Nonetheless, EBI2 was dispensable in active EAE. Human Th17 cells do also express EBI2, and EBI2 expressing cells are abundant within multiple sclerosis (MS) white matter lesions. These findings implicate EBI2 as a mediator of CNS autoimmunity and describe mechanistically its contribution to the migration of autoreactive T cells into inflamed organs.
Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/fisiología , Movimiento Celular/fisiología , Sistema Nervioso Central/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Esclerosis Múltiple/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Autoinmunidad/fisiología , Sistema Nervioso Central/fisiología , Familia 7 del Citocromo P450/metabolismo , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/patología , Femenino , Interleucina-1beta/metabolismo , Interleucina-23/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Esteroide Hidroxilasas/metabolismo , Células Th17/metabolismo , Células Th17/fisiologíaRESUMEN
The two human lymphotrophic γ-herpesviruses, Kaposi's sarcoma herpesvirus (KSHV) and Epstein-Barr virus (EBV), are a recognized cause of human cancer, encoding multiple miRs that are major players in carcinogenesis. Previously, we discovered that EBV-encoded miRs transfer between infected B and T lymphocytes. To further explore the biological significance of the spreading of γ-herpesvirus-encoded miRs on carcinogenesis, we focused on KSHV-miR-K12-11 (miR-K12-11) that is unique in having an identical seed sequence with the oncomiR hsa-miR-155, implicated in B cell lymphomas development. Here, we show for the first time that miR-K12-11 transfers in vitro from KSHV-infected BCBL-1 and BC-1 lymphoma lines to T cells. The transferred miR-K12-11 is active in the adopting T cells and binds its canonical target, the 3'-UTR of BACH1. Importantly, we show that the transfer of miR-K12-11 from BCBL-1 to Jurkat cells correlates with inhibition of the innate type-I interferons response to viral dsRNAs downstream of IKKε, a validated miR-K12-11 target. Finally, we show that miR-K12-11 spreading is not reduced by blocking the classical ceramide-dependent exosome secretion pathway. In summary, we report for the first time that intercellular viral oncomiR spreading is an additional mechanism employed by KSHV to inhibit host anti-viral immunity and consequently promote oncogenesis.
Asunto(s)
Linfocitos B/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 8/genética , MicroARNs/genética , ARN Viral/genética , Linfocitos T/metabolismo , Regiones no Traducidas 3'/genética , Linfocitos B/virología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Técnicas de Cocultivo , Regulación de la Expresión Génica , Herpesvirus Humano 4/fisiología , Herpesvirus Humano 8/fisiología , Interacciones Huésped-Patógeno , Humanos , Células Jurkat , Linfoma/genética , Linfoma/patología , Linfoma/virología , MicroARNs/metabolismo , ARN Viral/metabolismo , Linfocitos T/virología , Transfección/métodosRESUMEN
Multiple sclerosis is a demyelinating autoimmune disease of the CNS. Its animal model experimental autoimmune encephalomyelitis is commonly induced by active immunization with myelin antigens. To investigate human immune responses against myelin antigens in vivo we established a new subclinical experimental autoimmune encephalomyelitis model in humanized mice. NOD/Scidγcâ»/â» animals were transferred with peripheral blood mononuclear cells from healthy human donors and immunized with myelin antigens in complete Freund's adjuvant and antigen-pulsed autologous dendritic cells. Human T cells recovered from these animals reacted specifically to the soluble domain of myelin oligodendrocyte glycoprotein and secreted proinflammatory cytokines. Furthermore, immunized animals developed subclinical CNS inflammation with infiltrating CD4⺠and CD8⺠T cells and production of encephalitogenic cytokines. Thus, this model of myelin-induced CNS inflammation by human T cells may allow testing of new human-specific therapeuticals for multiple sclerosis.
Asunto(s)
Antígenos CD/toxicidad , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Glicoproteína Mielina-Oligodendrócito/toxicidad , Animales , Femenino , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Linfocitos T/inmunología , Linfocitos T/patologíaRESUMEN
Topical application of imiquimod (IMQ) on the skin of mice induces inflammation with common features found in psoriatic skin. Recently, it was postulated that IL-17 has an important role both in psoriasis and in the IMQ model. To further investigate the impact of IL-17RA signaling in psoriasis, we generated IL-17 receptor A (IL-17RA)-deficient mice (IL-17RA(del)) and challenged these mice with IMQ. Interestingly, the disease was only partially reduced and delayed but not abolished when compared with controls. In the absence of IL-17RA, we found persisting signs of inflammation such as neutrophil and macrophage infiltration within the skin. Surprisingly, already in the naive state, the skin of IL-17RA(del) mice contained significantly elevated numbers of Th17- and IL-17-producing γδ T cells, assuming that IL-17RA signaling regulates the population size of Th17 and γδ T cells. Upon IMQ treatment of IL-17RA(del) mice, these cells secreted elevated amounts of tumor necrosis factor-α, IL-6, and IL-22, accompanied by increased levels of the chemokine CXCL2, suggesting an alternative pathway of neutrophil and macrophage skin infiltration. Hence, our findings have major implications in the potential long-term treatment of psoriasis by IL-17-targeting drugs.