Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Inorg Chem ; 63(2): 1317-1327, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38154085

RESUMEN

Herein, we present two novel cyclometalated Ir(III) complexes of dinuclear and trinuclear design, Ir2(dppm)3(acac)2 and Ir3(dppm)4(acac)3, respectively, where dppm is 4,6-di(4-tert-butylphenyl)pyrimidine ligand and acac is acetylacetonate ligand. In both cases, rac-diastereomers were isolated during the synthesis. The materials show intense phosphorescence of outstanding rates (kr = ΦPL/τ) with corresponding radiative decay times of only τr = 1/kr = 0.36 µs for dinuclear Ir2(dppm)3(acac)2 and still shorter τr = 0.30 µs for trinuclear Ir3(dppm)4(acac)3, as measured for doped polystyrene film samples under ambient temperature. Measured under cryogenic conditions, radiative decay times of the three T1 substates (I, III, and III) and substate energy separations are τI = 11.8 µs, τII = 7.1 µs, τIII = 0.06 µs, ΔE(II-I) = 7 cm-1, and ΔE(III-I) = 175 cm-1 for dinuclear Ir2(dppm)3(acac)2 and τI = 3.1 µs, τII = 3.5 µs, τIII = 0.03 µs, ΔE(II-I) ≈ 1 cm-1, and ΔE(III-I) = 180 cm-1 for trinuclear Ir3(dppm)4(acac)3. The determined T1 state ZFS values (ΔE(III-I)) are smaller compared to that of mononuclear analogue Ir(dppm)2(acac) (ZFS = 210-1 cm). Theoretical analysis suggests that the high phosphorescence rates in multinuclear materials can be associated with the increased number of singlet states lending oscillator strength to the T1 → S0 transition.

2.
Inorg Chem ; 62(2): 810-822, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36592328

RESUMEN

Herein, we report a profound investigation of the photophysical properties of three mononuclear Ir(III) complexes fac-Ir(dppm)3 (Hdppm-4,6-bis(4-(tert-butyl)phenyl)pyrimidine), Ir(dppm)2(acac) (acac-acetylacetonate), and Ir(ppy)2(acac) (Hppy-phenylpyridine). The heteroleptic Ir(dppm)2(acac) is found to emit with efficiency above 80% and feature a remarkably high rate of emission. As measured under ambient temperature, Ir(dppm)2(acac) emits with the unusually short (sub-µs) radiative decay time of τr = τem/ΦPL = 1/kr = 0.91 µs in degassed toluene and τr = 0.73 µs in a doped polystyrene film under nitrogen. Investigations at cryogenic temperatures in glassy toluene showed that the emission stems from the T1 state and thus represents T1 → S0 phosphorescence with individual decay times of the T1 substates of T1,I = 66 µs, T1,II = 7.3 µs, T1,III = 0.19 µs, and energy gaps between the substates of ΔE(T1,II-T1,I) = 14 cm-1 and ΔE(T1,III-T1,I) = 210 cm-1. Analysis of the electronic structure of Ir(dppm)2(acac) showed that such a high rate of phosphorescence may stem from the two dppm ligands, with extended π-conjugation system and π-deficient character due to the pyrimidine ring, being serially aligned along one axis. Such alignment, along with the quasi-symmetric character of Jahn-Teller distortions in the T1 state, affords a large chromophore, comprising four (het)aryl rings of the two dppm ligands. This affords an exceptionally large oscillator strength of the MLCT-character singlet state spin-orbit coupled with the T1 state and thus brings about enhancement of the phosphorescence rate. These findings reveal molecular design principles paving the way to new phosphors of enhanced emission rates.

3.
Inorg Chem ; 62(45): 18465-18473, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37905928

RESUMEN

In this work, we introduce a spiro-fluorene unit into a phenylpyridine (CN)-type ligand as a simple way to deplanarize the structure and increase the solubility of the final platinum(II)···complex. Using a spiro-fluorene unit, orthogonal to the main coordination plane of the complex, reduces intermolecular interactions, leading to increased solubility but without significantly affecting the ability of the complex to form Pt···Pt dimers and excimers. This approach is highly important in the design of platinum(II) complexes, which often suffer from low solubility due to their mainly planar structure, and offers an alternative to the use of bulky alkyl groups. The nonplanar structure is also beneficial for vacuum-deposition techniques as it lowers the sublimation temperature. Importantly, there are no sp3 hybridized carbon atoms in the cyclometalating ligand that contain hydrogens, the undesired feature that is associated with the low stability of the materials in OLEDs. The complex displays high solubility in toluene, ∼10 mg mL-1, at room temperature, which allows producing solution-processed OLEDs in a wide range of doping concentrations, 5-100%, and EQE up to 5.9%, with a maximum luminance of 7400 cd m-2. Concurrently, we have also produced vacuum-deposited OLEDs, which display luminance up to 32 500 cd m-2 and a maximum EQE of 11.8%.

4.
Inorg Chem ; 60(2): 642-650, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33405901

RESUMEN

The spin-forbidden nature of phosphorescence in Ir(III) complexes is relaxed by the metal-induced effect of spin-orbit coupling (SOC). A further increase of the phosphorescence rate could potentially be achieved by introducing additional centers capable of further enhancing the SOC effect, such as metal-coordinated halides. Herein, we present a dinuclear Ir(III) complex Ir2I2 that contains two Ir(III)-iodide moieties. The complex shows intense phosphorescence with a quantum yield of ΦPL(300 K) = 90% and a submicrosecond decay time of only τ(300 K) = 0.34 µs, as measured under ambient temperature for the degassed toluene solution. These values correspond to a top value T1 → S0 phosphorescence rate of kr = 2.65 × 106 s-1. Investigations at cryogenic temperatures allowed us to determine the zero-field splitting (ZFS) of the emitting state T1 ZFS(III-I) = 170 cm-1 and unusually short individual decay times of T1 substates: τ(I) = 6.4 µs, τ(II) = 7.6 µs, and τ(III) = 0.05 µs. This indicates a strong SOC of state T1 with singlet states. Theoretical investigations suggest that the SOC of state T1 with singlets is also contributed by halides. Strongly contributing to the higher occupied molecular orbitals of the complex (e.g., HOMO, HOMO - 1, and so forth), iodides work as important SOC centers that operate in tandem with metals. The examples of Ir2I2 and of earlier reported analogous complex Ir2Cl2 reveal that the metal-coordinated halides can enhance the SOC of state T1 with singlets and, consequently, the phosphorescence rate. A comparative study of Ir2I2 and Ir2Cl2 shows that the share of halides in total contribution (halides plus metals) to the SOC of state T1 with singlets increases strongly upon exchange of chlorides for iodides. The exchange also led to the decrease in values of ZFS of the T1 state from ZFS(III-I) = 205 cm-1 for Ir2Cl2 to T1 ZFS(III-I) = 170 cm-1 for Ir2I2. This results in a more efficient thermal population of the fastest emitting T1 substate III, thus further enhancing the room-temperature phosphorescence rate.

5.
Appl Environ Microbiol ; 86(15)2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32444470

RESUMEN

Anaerobic degradation of polycyclic aromatic hydrocarbons has been investigated mostly with naphthalene as a model compound. Naphthalene degradation by sulfate-reducing bacteria proceeds via carboxylation to 2-naphthoic acid, formation of a coenzyme A thioester, and subsequent reduction to 5,6,7,8-tetrahydro-2-naphthoyl-coenzyme A (THNCoA), which is further reduced to hexahydro-2-naphthoyl-CoA (HHNCoA) by tetrahydronaphthoyl-CoA reductase (THNCoA reductase), an enzyme similar to class I benzoyl-CoA reductases. When analyzing THNCoA reductase assays with crude cell extracts and NADH as electron donor via liquid chromatography-mass spectrometry (LC-MS), scanning for putative metabolites, we found that small amounts of the product of an HHNCoA hydratase were formed in the assays, but the downstream conversion by an NAD+-dependent ß-hydroxyacyl-CoA dehydrogenase was prevented by the excess of NADH in those assays. Experiments with alternative electron donors indicated that 2-oxoglutarate can serve as an indirect electron donor for the THNCoA-reducing system via a 2-oxoglutarate:ferredoxin oxidoreductase. With 2-oxoglutarate as electron donor, THNCoA was completely converted and further metabolites resulting from subsequent ß-oxidation-like reactions and hydrolytic ring cleavage were detected. These metabolites indicate a downstream pathway with water addition to HHNCoA and ring fission via a hydrolase acting on a ß'-hydroxy-ß-oxo-decahydro-2-naphthoyl-CoA intermediate. Formation of the downstream intermediate cis-2-carboxycyclohexylacetyl-CoA, which is the substrate for the previously described lower degradation pathway leading to the central metabolism, completes the anaerobic degradation pathway of naphthalene.IMPORTANCE Anaerobic degradation of polycyclic aromatic hydrocarbons is poorly investigated despite its significance in anoxic sediments. Using alternative electron donors for the 5,6,7,8-tetrahydro-2-naphthoyl-CoA reductase reaction, we observed intermediary metabolites of anaerobic naphthalene degradation via in vitro enzyme assays with cell extracts of anaerobic naphthalene degraders. The identified metabolites provide evidence that ring reduction terminates at the stage of hexahydro-2-naphthoyl-CoA and a sequence of ß-oxidation-like degradation reactions starts with a hydratase acting on this intermediate. The final product of this reaction sequence was identified as cis-2-carboxycyclohexylacetyl-CoA, a compound for which a further downstream degradation pathway has recently been published (P. Weyrauch, A. V. Zaytsev, S. Stephan, L. Kocks, et al., Environ Microbiol 19:2819-2830, 2017, https://doi.org/10.1111/1462-2920.13806). Our study reveals the first ring-cleaving reaction in the anaerobic naphthalene degradation pathway. It closes the gap between the reduction of the first ring of 2-naphthoyl-CoA by 2-napthoyl-CoA reductase and the lower degradation pathway starting from cis-2-carboxycyclohexylacetyl-CoA, where the second ring cleavage takes place.


Asunto(s)
Proteínas Bacterianas/metabolismo , Coenzima A/metabolismo , Deltaproteobacteria/enzimología , Naftalenos/metabolismo , Oxidorreductasas/metabolismo , Anaerobiosis , Oxidación-Reducción
6.
Chemistry ; 26(2): 428-437, 2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31489718

RESUMEN

The synthesis and evaluation of three novel bis-1,2,4-triazine ligands containing five-membered aliphatic rings are reported. Compared to the more hydrophobic ligands 1-3 containing six-membered aliphatic rings, the distribution ratios for relevant f-block metal ions were approximately one order of magnitude lower in each case. Ligand 10 showed an efficient, selective and rapid separation of AmIII and CmIII from nitric acid. The speciation of the ligands with trivalent f-block metal ions was probed using NMR titrations and competition experiments, time-resolved laser fluorescence spectroscopy and X-ray crystallography. While the tetradentate ligands 8 and 10 formed LnIII complexes of the same stoichiometry as their more hydrophobic analogues 2 and 3, significant differences in speciation were observed between the two classes of ligand, with a lower percentage of the extracted 1:2 complexes being formed for ligands 8 and 10. The structures of the solid state 1:1 and 1:2 complexes formed by 8 and 10 with YIII , LuIII and PrIII are very similar to those formed by 2 and 3 with LnIII . Ligand 10 forms CmIII and EuIII 1:2 complexes that are thermodynamically less stable than those formed by ligand 3, suggesting that less hydrophobic ligands form less stable AnIII complexes. Thus, it has been shown for the first time how tuning the cyclic aliphatic part of these ligands leads to subtle changes in their metal ion speciation, complex stability and metal extraction affinity.

7.
Environ Microbiol ; 19(7): 2819-2830, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28574200

RESUMEN

The cyclohexane derivative cis-2-(carboxymethyl)cyclohexane-1-carboxylic acid [(1R,2R)-/(1S,2S)-2-(carboxymethyl)cyclohexane-1-carboxylic acid] has previously been identified as metabolite in the pathway of anaerobic degradation of naphthalene by sulfate-reducing bacteria. We tested the corresponding CoA esters of isomers and analogues of this compound for conversion in cell free extracts of the anaerobic naphthalene degraders Desulfobacterium strain N47 and Deltaproteobacterium strain NaphS2. Conversion was only observed for the cis-isomer, verifying that this is a true intermediate and not a dead-end product. Mass-spectrometric analyses confirmed that conversion is performed by an acyl-CoA dehydrogenase and a subsequent hydratase yielding an intermediate with a tertiary hydroxyl-group. We propose that a novel kind of ring-opening lyase is involved in the further catabolic pathway proceeding via pimeloyl-CoA. In contrast to degradation pathways of monocyclic aromatic compounds where ring-cleavage is achieved via hydratases, this lyase might represent a new ring-opening strategy for the degradation of polycyclic compounds. Conversion of the potential downstream metabolites pimeloyl-CoA and glutaryl-CoA was proved in cell free extracts, yielding 2,3-dehydropimeloyl-CoA, 3-hydroxypimeloyl-CoA, 3-oxopimeloyl-CoA, glutaconyl-CoA, crotonyl-CoA, 3-hydroxybutyryl-CoA and acetyl-CoA as observable intermediates. This indicates a link to central metabolism via ß-oxidation, a non-decarboxylating glutaryl-CoA dehydrogenase and a subsequent glutaconyl-CoA decarboxylase.


Asunto(s)
Acilcoenzima A/metabolismo , Deltaproteobacteria/metabolismo , Naftalenos/metabolismo , Acetilcoenzima A/biosíntesis , Acilcoenzima A/biosíntesis , Acil-CoA Deshidrogenasa/metabolismo , Anaerobiosis , Sistema Libre de Células/metabolismo , Liasas/metabolismo , Redes y Vías Metabólicas , Oxidación-Reducción
8.
Chem Sci ; 14(47): 13934-13943, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38075648

RESUMEN

The high luminescence efficiency of cyclometallated iridium(iii) complexes, including those widely used in OLEDs, is typically attributed solely to the formally spin-forbidden phosphorescence process being facilitated by spin-orbit coupling with the Ir(iii) centre. In this work, we provide unequivocal evidence that an additional mechanism can also participate, namely a thermally activated delayed fluorescence (TADF) pathway. TADF is well-established in other materials, including in purely organic compounds, but has never been observed in iridium complexes. Our findings may transform the design of iridium(iii) complexes by including an additional, faster fluorescent radiative decay pathway. We discover it here in a new dinuclear complex, 1, of the form [Ir(N^C)2]2(µ-L), where N^C represents a conventional N^C-cyclometallating ligand, and L is a bis-N^O-chelating bridging ligand derived from 4,6-bis(2-hydroxyphenyl)-pyrimidine. Complex 1 forms selectively as the rac diastereoisomer upon reaction of [Ir(N^C)2(µ-Cl)]2 with H2L under mild conditions, with none of the alternative meso isomer being separated. Its structure is confirmed by X-ray diffraction. Complex 1 displays deep-red luminescence in solution or in polystyrene film at room temperature (λem = 643 nm). Variable-temperature emission spectroscopy uncovers the TADF pathway, involving the thermally activated re-population of S1 from T1. At room temperature, TADF reduces the photoluminescence lifetime in film by a factor of around 2, to 1 µs. The TADF pathway is associated with a small S1-T1 energy gap ΔEST of approximately 50 meV. Calculations that take into account the splitting of the T1 sublevels through spin-orbit coupling perfectly reproduce the experimentally observed temperature-dependence of the lifetime over the range 20-300K. A solution-processed OLED comprising 1 doped into the emitting layer at 5 wt% displays red electroluminescence, λEL = 625 nm, with an EQE of 5.5% and maximum luminance of 6300 cd m-2.

9.
Chem Sci ; 12(17): 6172-6180, 2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33996015

RESUMEN

A novel dinuclear platinum(ii) complex featuring a ditopic, bis-tetradentate ligand has been prepared. The ligand offers each metal ion a planar O^N^C^N coordination environment, with the two metal ions bound to the nitrogen atoms of a bridging pyrimidine unit. The complex is brightly luminescent in the red region of the spectrum with a photoluminescence quantum yield of 83% in deoxygenated methylcyclohexane solution at ambient temperature, and shows a remarkably short excited state lifetime of 2.1 µs. These properties are the result of an unusually high radiative rate constant of around 4 × 105 s-1, a value which is comparable to that of the very best performing Ir(iii) complexes. This unusual behaviour is the result of efficient thermally activated reverse intersystem crossing, promoted by a small singlet-triplet energy difference of only 69 ± 3 meV. The complex was incorporated into solution-processed OLEDs achieving EQEmax = 7.4%. We believe this to be the first fully evidenced report of a Pt(ii) complex showing thermally activated delayed fluorescence (TADF) at room temperature, and indeed of a Pt(ii)-based delayed fluorescence emitter to be incorporated into an OLED.

10.
J Phys Chem Lett ; 11(15): 5849-5855, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32615767

RESUMEN

A dinuclear iridium(III) complex IrIr shows dual emission consisting of near infrared (NIR) phosphorescence (λmax = 714 nm, CH2Cl2, T = 300 K) and green fluorescence (λmax = 537 nm). The NIR emission stems from a triplet state (T1) localized on the ditopic bridging ligand (3LC). Because of the dinuclear molecular structure, the phosphorescence efficiency (ΦPL = 3.5%) is high compared to those of other known red/NIR-emitting iridium complexes. The weak fluorescence stems from the lowest excited singlet state (S1) of 1LC character. The occurrence of fluorescence is ascribed to relatively slow intersystem crossing (ISC) from state S1 (1LC) to the triplet manifold. The measured ISC rate corresponds to a time constant τISC of 2.1 ps, which is an order of magnitude longer than those usually found for iridium complexes. This slow ISC rate can be explained in terms of the LC character and large energy separation (0.57 eV) of the respective singlet and triplet excited states. IrIr is internalized by live HeLa cells as evidenced by confocal luminescence microscopy.

11.
Org Lett ; 10(13): 2877-80, 2008 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-18533668

RESUMEN

The one-pot synthesis of highly substituted piperid-4-ones has been achieved. Diketene is added to a tosyl imine in the presence of TiCl(4) and MeOH, followed by 1 equiv of aldehyde to generate 2,6-disubstituted nonsymmetrical piperid-4-ones as a mixture of cis-/trans-diastereomers in good yields. This mixture of diastereomers can be converted to a single 2,6- cis-diastereomer by epimerization with K(2)CO(3).


Asunto(s)
Piperidonas/síntesis química , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular , Piperidonas/química , Compuestos de Amonio Cuaternario/química , Sodio/química , Estereoisomerismo
12.
J Med Chem ; 59(10): 4476-87, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27094856

RESUMEN

A series of novel 8-aminophenoxazin-3-one and 7-aminophenoxazin-3-one chromogens and their corresponding ß-alanine derivatives were synthesized and evaluated for their ability to detect ß-alanyl aminopeptidase activity in bacteria known to hydrolyze ß-alanine derivatized substrates. The results provided insight into the structural requirements for effective visualization of enzymatic activity and the mechanism of formation of phenoxazinon-3-ones. 8-Aminophenoxazin-3-one substrates 23c, 23d, and 23e were prepared in good to high overall yield and were selective for ß-alanyl aminopeptidase activity in bacteria, producing a lighter agar background coloration facilitating visualization of colored colonies, with variable localization to the colonies, but had lower sensitivities for the detection of Pseudomonas aeruginosa in comparison to the analogous 7-aminophenoxazin-3-one substrates. The synthetic methodology employed here allows the preparation of a range of substrates for evaluation and the establishment of structure-activity relationships. For example, the 2-pentyl substituted aminophenoxazin-3-one 22b performed with analogous sensitivity to the corresponding 1-pentyl-7-aminophenoxazin-3-one substrate 1 used commercially, highlighting that the position of the pentyl substituent can be varied while maintaining detection sensitivity.


Asunto(s)
Antibacterianos/farmacología , Antígenos CD13/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Oxazinas/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Antígenos CD13/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Oxazinas/síntesis química , Oxazinas/química , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/aislamiento & purificación , Relación Estructura-Actividad
13.
Org Biomol Chem ; 6(4): 682-92, 2008 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-18264568

RESUMEN

Novel 7-N-(beta-alanyl)aminophenoxazin-3-one salts 27a-d have been synthesized and tested as chromogenic substrates for beta-alanyl aminopeptidase, which is present in Pseudomonas aeruginosa, the most common respiratory pathogen in patients with cystic fibrosis. The biological results show that 7-N-(beta-alanyl)amino-1-pentylphenoxazin-3-one trifluoroacetate salt 27a is a chromogenic substrate for this bacterium, with a low degree of diffusion in nutrient media for growing bacterial cultures and a bright red colour, making it easily distinguishable from the agar background.


Asunto(s)
Alanina/análogos & derivados , Aminopeptidasas/metabolismo , Compuestos Cromogénicos/síntesis química , Compuestos Cromogénicos/farmacología , Oxazinas/síntesis química , Oxazinas/farmacología , Agar/química , Alanina/síntesis química , Alanina/química , Alanina/metabolismo , Alanina/farmacología , Compuestos Cromogénicos/metabolismo , Color , Oxazinas/química , Oxazinas/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA