Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Physiol ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018163

RESUMEN

Heart failure (HF) is a heterogeneous condition that can be categorized according to the left ventricular ejection fraction (EF) into HF with reduced (HFrEF) or preserved (HFpEF) EF. Although HFrEF and HFpEF share some common clinical manifestations, the mechanisms underlying each phenotype are often found to be distinct. Identifying shared and divergent pathophysiological features might expand our insights on HF pathophysiology and assist the search for therapies for each HF subtype. In this study, we evaluated and contrasted two new murine models of non-ischaemic HFrEF and cardiometabolic HFpEF in terms of myocardial structure, left ventricular function, gene expression, cardiomyocyte calcium handling, mitochondrial polarization and protein acetylation in a head-to-head fashion. We found that in conditions of similar haemodynamic stress, the HFrEF myocardium underwent a more pronounced hypertrophic and fibrotic remodelling, whereas inflammation was greater in the HFpEF myocardium. We observed opposing features on calcium release, which was diminished in the HFrEF cardiomyocyte but enhanced in the HFpEF cardiomyocyte. Mitochondria were less polarized in both HFrEF and HFpEF cardiomyocytes, reflecting similarly impaired metabolic capacity. Hyperacetylation of cardiac proteins was observed in both models, but it was more accentuated in the HFpEF heart. Despite shared features, unique triggering mechanisms (neurohormonal overactivation in HFrEF vs. inflammation in HFpEF) appear to determine the distinct phenotypes of HF. The findings of the present research stress the need for further exploration of the differential mechanisms underlying each HF subtype, because they might require specific therapeutic interventions. KEY POINTS: The mechanisms underlying heart failure with either reduced (HFrEF) or preserved (HFpEF) ejection fraction are often found to be different. Previous studies comparing pathophysiological traits between HFrEF and HFpEF have been conducted on animals of different ages and strains. The present research contrasted two age-matched mouse models of non-ischaemic HFrEF and cardiometabolic HFpEF to uncover divergent and shared features. We found that upon similar haemodynamic stress, the HFrEF heart experienced a more pronounced hypertrophic and fibrotic remodelling, whereas inflammation appeared to be greater in the HFpEF myocardium. Calcium release was diminished in the HFrEF cardiomyocyte and enhanced in the HFpEF cardiomyocyte. Mitochondria were comparably less polarized in both HFrEF and HFpEF myocytes. Hyperacetylation of proteins was common to both models, but stronger in the HFpEF heart. Casting light on common and distinguishing features might ease the quest for phenotype-specific therapies for heart failure patients.

2.
Arch Pharm (Weinheim) ; : e2400492, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39074969

RESUMEN

Drug repurposing is defined as the use of approved therapeutic drugs for indications different from those for which they were originally designed. Repositioning diminishes both the time and cost for drug development by omitting the discovery stage, the analysis of absorption, distribution, metabolism, and excretion routes, as well as the studies of the biochemical and physiological effects of a new compound. Besides, drug repurposing takes advantage of the increased bioinformatics knowledge and availability of big data biology. There are many examples of drugs with repurposed indications evaluated in in vitro studies, and in pharmacological, preclinical, or retrospective clinical analyses. Here, we briefly review some of the experimental strategies and technical advances that may improve translational research in cardiovascular diseases. We also describe exhaustive research from basic science to clinical studies that culminated in the final approval of new drugs and provide examples of successful drug repurposing in the field of cardiology.

3.
Mol Cell Biochem ; 478(11): 2481-2488, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36867342

RESUMEN

Obesity is a relevant health public issue and is the main factor for glucose metabolism dysregulation and diabetes progression; however, the differential role of a high-fat diet or high sugar diet consumption on glucose metabolism and insulin processing is not well understood and has been scarcely described. Our research aimed to analyze the effects of chronic consumption of both high sucrose and high-fat diets on glucose and insulin metabolism regulation. Wistar rats were fed with high-sugar or high-fat diets for 12 months; after that, fasting glucose and insulin levels were measured along with a glucose tolerance test (GTT). Proteins related to insulin synthesis and secretion were quantified in pancreas homogenates, whereas islets were isolated to analyze ROS generation and size measurement. Our results show that both diets induce metabolic syndrome, linked with central obesity, hyperglycemia, and insulin resistance. We observed alterations in the expression of proteins related with insulin synthesis and secretion, along with diminution of Langerhans islets size. Interestingly, the severity and number of alterations were more evident in the high-sugar diet than in the high-fat diet group. In conclusion, obesity and glucose metabolism dysregulation induced by carbohydrate consumption, led to worst outcomes than high-fat diet.

4.
Toxicol Appl Pharmacol ; 454: 116242, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36108929

RESUMEN

Nephrotoxicity is an important adverse effect of oxidative stress induced by hexavalent chromium [Cr(VI)]. The effect of ellagic acid, a dietary polyphenolic compound with potent antioxidant activity, was investigated in Cr(VI)-induced kidney injury. Six groups of male Wistar rats were treated intragastrically with vehicle or ellagic acid (15 and 30 mg/kg) for 10 days. On day 10, rats received saline or Cr(VI) (K2Cr2O7 15 mg/kg) subcutaneously. Cr(VI) significantly increased kidney weight, affected kidney function assessed by biomarkers in blood and urine (protein, creatinine and urea nitrogen), caused histological changes (tubular injury and glomerular capillary tuft damage), increased markers of oxidative stress and reduced the activity of antioxidant enzymes. In addition, Cr(VI) altered mitochondrial ultrastructure, impaired mitochondrial respiration, increased lipid peroxidation, and inhibited the function of mitochondrial enzymes. Pretreatment with ellagic acid (30 mg/kg) attenuated all the aforementioned alterations. Furthermore, we explored whether ellagic acid might regulate the tumor necrosis factor-alpha (TNF-α)/receptor-interacting protein kinase 3 (RIPK3) pathway, reducing Cr(VI)-induced tubular necrosis. Cr(VI) upregulated both TNF-α and RIPK3, but ellagic acid only decreased TNF-α levels, having no effect on RIPK3 content. Therefore, understanding the mechanisms through which Cr(VI) promotes necroptosis is crucial for future studies, in order to design strategies to mitigate kidney damage. In conclusion, ellagic acid attenuated Cr(VI)-induced renal alterations by preventing oxidative stress, supporting enzymatic activities, suppressing TNF-α, and preserving mitochondrial ultrastructure and function, most likely due to its antioxidant properties.


Asunto(s)
Antioxidantes , Factor de Necrosis Tumoral alfa , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Biomarcadores/metabolismo , Cromo/metabolismo , Cromo/toxicidad , Creatinina , Ácido Elágico/metabolismo , Ácido Elágico/farmacología , Riñón , Masculino , Mitocondrias/metabolismo , Nitrógeno/metabolismo , Estrés Oxidativo , Proteínas Quinasas/metabolismo , Ratas , Ratas Wistar , Factor de Necrosis Tumoral alfa/metabolismo , Urea/metabolismo
5.
Pharmacol Res ; 156: 104758, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32200027

RESUMEN

Cardiovascular system cell biology is tightly regulated and mitochondria play a relevant role in maintaining heart function. In recent decades, associations between such organelles and the sarco/endoplasmic reticulum (SR) have been raised great interest. Formally identified as mitochondria-associated SR membranes (MAMs), these structures regulate different cellular functions, including calcium management, lipid metabolism, autophagy, oxidative stress, and management of unfolded proteins. In this review, we highlight MAMs' alterations mainly in cardiomyocytes, linked with cardiovascular diseases, such as cardiac ischemia-reperfusion, heart failure, and dilated cardiomyopathy. We also describe proteins that are part of the MAMs' machinery, as the FUN14 domain containing 1 (FUNDC1), the sigma 1 receptor (Sig-1R) and others, which might be new molecular targets to preserve the function and structure of the heart in such diseases. Understanding the machinery of MAMs and its function demands our attention, as such knowledge might contribute to strengthen the role of these relative novel structures in heart diseases.


Asunto(s)
Retículo Endoplásmico/metabolismo , Cardiopatías/metabolismo , Mitocondrias Cardíacas/metabolismo , Membranas Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Señalización del Calcio , Fármacos Cardiovasculares/uso terapéutico , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/patología , Cardiopatías/tratamiento farmacológico , Cardiopatías/patología , Cardiopatías/fisiopatología , Humanos , Proteínas de la Membrana/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/patología , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/patología , Proteínas Mitocondriales/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Receptores sigma/metabolismo , Receptor Sigma-1
6.
Liver Transpl ; 24(8): 1070-1083, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29679463

RESUMEN

Cytidine-5'-diphosphocholine (CDP-choline) participates as an intermediary in the synthesis of phosphatidylcholine, an essential component of cellular membranes. Citicoline treatment has shown beneficial effects in cerebral ischemia, but its potential to diminish reperfusion damage in liver has not been explored. In this work, we evaluated the hepatoprotective effect of citicoline and its possible association with inflammatory/oxidative stress and mitochondrial function because they are the main cellular features of reperfusion damage. Ischemia/reperfusion (I/R) in rat livers was performed with the Pringle's maneuver, clamping the 3 elements of the pedicle (hepatic artery, portal vein, and biliary tract) for 30 minutes and then removing the clamp to allow hepatic reperfusion for 60 minutes. The I/R + citicoline group received the compound before I/R. Liver injury was evaluated by measuring aspartate aminotransferase and alanine aminotransferase as well as lactic acid levels in serum; proinflammatory cytokines, proresolving lipid mediators, and nuclear factor kappa B content were determined as indicators of the inflammatory response. Antioxidant effects were evaluated by measuring markers of oxidative stress and antioxidant molecules. Oxygen consumption and the activities of the respiratory chain were used to monitor mitochondrial function. CDP-choline reduced aspartate aminotransferase (AST), alanine aminotransferase (ALT), as well as lactic acid levels in blood samples from reperfused rats. Diminution in tumor necrosis factor alpha (TNF-α) and increase in the proresolving lipid mediator resolvin D1 were also observed in the I/R+citicoline group, in comparison with the I/R group. Oxidative/nitroxidative stress in hepatic mitochondria concurred with deregulation of oxidative phosphorylation, which was associated with the loss of complex III and complex IV activities. In conclusion, CDP-choline attenuates liver damage caused by ischemia and reperfusion by reducing oxidative stress and maintaining mitochondrial function. Liver Transplantation XX XX-XX 2018 AASLD.


Asunto(s)
Citidina Difosfato Colina/farmacología , Trasplante de Hígado/efectos adversos , Mitocondrias/efectos de los fármacos , Sustancias Protectoras/farmacología , Daño por Reperfusión/prevención & control , Animales , Citidina Difosfato Colina/uso terapéutico , Modelos Animales de Enfermedad , Humanos , Hígado/citología , Hígado/efectos de los fármacos , Hígado/patología , Hígado/cirugía , Pruebas de Función Hepática , Masculino , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/uso terapéutico , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/etiología , Daño por Reperfusión/patología
7.
Basic Res Cardiol ; 112(2): 15, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28160133

RESUMEN

The demonstration that caveolin-3 overexpression reduces myocardial ischemia/reperfusion injury and our own finding that multiprotein signaling complexes increase in mitochondria in association with caveolin-3 levels, led us to investigate the contribution of caveolae-driven extracellular signal-regulated kinases 1/2 (ERK1/2) on maintaining the function of cardiac mitochondrial subpopulations from reperfused hearts subjected to postconditioning (PostC). Rat hearts were isolated and subjected to ischemia/reperfusion and to PostC. Enhanced cardiac function, reduced infarct size and preserved ultrastructure of cardiomyocytes were associated with increased formation of caveolar structures, augmented levels of caveolin-3 and mitochondrial ERK1/2 activation in PostC hearts in both subsarcolemmal (SSM) and interfibrillar (IFM) subpopulations. Disruption of caveolae with methyl-ß-cyclodextrin abolished cardioprotection in PostC hearts and diminished pho-ERK1/2 gold-labeling in both mitochondrial subpopulations in correlation with suppression of resistance to permeability transition pore opening. Also, differences between the mitochondrial subpopulations in the setting of PostC were evaluated. Caveolae disruption with methyl-ß-cyclodextrin abolished the cardioprotective effect of postconditioning by inhibiting the interaction of ERK1/2 with mitochondria and promoted decline in mitochondrial function. SSM, which are particularly sensitive to reperfusion damage, take advantage of their location in cardiomyocyte boundary and benefit from the cardioprotective signaling driven by caveolae, avoiding injury propagation.


Asunto(s)
Caveolas/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Animales , Modelos Animales de Enfermedad , Immunoblotting , Poscondicionamiento Isquémico , Masculino , Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas , Ratas Wistar
8.
Basic Res Cardiol ; 110(2): 1, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25589055

RESUMEN

A high proportion of primary percutaneous coronary interventions performed in the setting of acute myocardial infarction, concur with inadequate myocardial perfusion at the microvascular level. This phenomenon, known as "no-reflow" contributes to reperfusion injury, poor prognosis and to unfavorable clinical outcome. In this study, we evaluated the hypothesis that the synthetic 17ß-aminoestrogen Prolame, may confer cardioprotection and prevent against no-reflow. In an open-chest model of 30-min ischemia and 90-min reperfusion, male Wistar rats were randomly assigned to different groups: Control, Prolame, Prolame followed by the nitric oxide synthase inhibitor (L-NAME), and 17ß-estradiol. Areas of risk, infarct size and no-reflow were determined by planimetry with triphenyltetrazolium chloride and thioflavin-S stains. Structural damage of the vasculature was measured as capillary compression in clarified tissue after intra-atrial injection of Microfil. Hemodynamic function was obtained at the end of stabilization, ischemia and reperfusion; nitric oxide (NO·) content was determined indirectly using the Griess reaction. Activation of the eNOS signaling cascade was determined by western blot. Prolame reduced the infarcted area, decreased the zones of no-reflow and capillary compression by activating the PI3K/Akt/eNOS signaling pathway in correlation with NO· increase. Prolame also activated endothelial cells augmenting NO· production, which was inhibited by ICI182780 (a selective estrogen receptor down-regulator), supporting the notion that the cardioprotective effect of Prolame involves the preservation of endothelium through the activation of estrogen receptor downstream signaling. Our results provide evidence that Prolame has potential therapeutic application in patients with AMI, as it prevents from both vascular and cardiac tissue damage.


Asunto(s)
Estrenos/farmacología , Hemodinámica/efectos de los fármacos , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/prevención & control , Fenómeno de no Reflujo/prevención & control , Transducción de Señal/efectos de los fármacos , Animales , Western Blotting , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Masculino , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fenómeno de no Reflujo/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar , Venas Umbilicales
9.
Mol Cell Biochem ; 406(1-2): 183-97, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25971372

RESUMEN

The potential of C-phycocyanin (C-PC) to prevent cisplatin (CP)-induced kidney mitochondrial dysfunction was determined in CD-1 male mice. The CP-induced mitochondrial dysfunction was characterized by ultrastructural abnormalities and by decrease in the following parameters in isolated kidney mitochondria: adenosine diphosphate (ADP)-induced oxygen consumption (state 3), respiratory control ratio, ADP/oxygen (ADP/O) ratio, adenosine triphosphate synthesis, membrane potential, calcium retention, glutathione (GSH) content, and activity of respiratory complex I, aconitase, catalase, and GSH peroxidase. These mitochondria also showed increase in hydrogen peroxide production, malondialdehyde, and 3-nitrotyrosine protein adducts content. The above-described changes, as well as CP-induced nephrotoxicity, were attenuated in mice pretreated with a single injection of C-PC. Our data suggest that the attenuation of mitochondrial abnormalities is involved in the protective effect of C-PC against CP-induced nephrotoxicity. This is the first demonstration that C-PC pretreatment prevents CP-induced mitochondrial dysfunction in mice.


Asunto(s)
Antineoplásicos/toxicidad , Cisplatino/toxicidad , Mitocondrias/efectos de los fármacos , Estrés Oxidativo , Ficocianina/farmacología , Adenosina Trifosfato/biosíntesis , Animales , Nitrógeno de la Urea Sanguínea , Calcio/metabolismo , Catalasa/metabolismo , Creatinina/sangre , Evaluación Preclínica de Medicamentos , Transporte de Electrón , Glutatión Peroxidasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Riñón/fisiopatología , Masculino , Malondialdehído/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Consumo de Oxígeno , Superóxido Dismutasa/metabolismo
10.
Pharmacol Res ; 97: 84-103, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25941011

RESUMEN

Traditional drugs or therapies rarely have effects on regression of chronic liver diseases, which result in many cases from sustained oxidative stress. In recent years, ellagic acid (EA) has gained attention due to its multiple biological activities and several molecular targets. This is the first review focused on the pharmacological properties and on the molecular mechanisms activated by EA in terms of liver protection. EA possesses antioxidant, antihepatotoxic, antisteatosic, anticholestatic, antifibrogenic, antihepatocarcinogenic and antiviral properties that improves the hepatic architectural and functions against toxic and pathological conditions. The molecular mechanisms that EA activates include the scavenging of free radicals, regulation of phase I and II enzymes, modulation of proinflammatory and profibrotic cytokines synthesis, the regulation of biochemical pathways involved in the synthesis and degradation of lipids as well as the maintenance of essential trace elements levels. EA also inhibits hepatic stellate cells and mast cells activation, the proliferation of transformed cells, as well as viral replication by increasing antioxidant response, induction of apoptosis, downregulation of genes involved in cell cycle and angiogenesis, and stimulation of cellular immune response. Despite the enormous therapeutic potential of EA as an innovative pharmacological strategy, the number of phase I and II trials in patients is scarce, precluding its clinical application. In these sense, the use of new delivery systems that enhances EA bioavailability would improve the results already obtained. Also it remains to be determined if treatment with urolithins instead of EA would represent a better strategy in hepatic disease treatment.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Ácido Elágico/farmacología , Sustancias Protectoras/farmacología , Animales , Antivirales/farmacología , Colestasis/prevención & control , Ácido Elágico/química , Ácido Elágico/farmacocinética , Hígado Graso/prevención & control , Células Estrelladas Hepáticas/efectos de los fármacos , Virus de Hepatitis/efectos de los fármacos , Humanos , Neoplasias Hepáticas/prevención & control
11.
Cardiovasc Drugs Ther ; 29(2): 111-20, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25779825

RESUMEN

PURPOSE: The pathogenic mechanisms leading to cardiovascular disorders in patients with chronic kidney disease have not been clearly established, although increased oxidative stress has been pointed out as a potential cause. Therefore, as cardiovascular events are still the first cause of death in patients with chronic kidney disease and traditional drugs or therapies rarely have effects on cardiac complications, we sought to determine the effect of curcumin in treating cardiac dysfunction in rats with established chronic renal disease. METHODS AND RESULTS: Treatment consisted in daily administration of curcumin (120 mg/kg/day) dissolved in 0.05% carboxymethylcellulose via oral gavages during 30 days, beginning from day 30 after 5/6 nephrectomy (5/6Nx). Cardiac function, markers of oxidative stress, activation of PI3K/Akt/GSK3ß and MEK1/2-ERK1/2 pathway, metalloproteinase-II (MMP-2) content, overall gelatinolytic activity, ROS production and mitochondrial integrity were evaluated after 1-month treatment. Curcumin restored systolic blood pressure, diminished interventricular and rear wall thickening, decreased left ventricle dimension at end-systole (LVSd) and restored ejection fraction in nephrectomized rats. Also, it diminished metalloproteinase-II levels and overall gelatinase activity, decreased oxidative stress and inhibited the mitochondrial permeability transition pore opening. CONCLUSION: Our findings suggest that curcumin might have therapeutic potential in treatment of heart disease in patients with established CKD by attenuating oxidative stress-related events as cardiac remodeling, mitochondrial dysfunction and cell death.


Asunto(s)
Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Curcumina/farmacología , Curcumina/uso terapéutico , Corazón/efectos de los fármacos , Insuficiencia Renal Crónica/tratamiento farmacológico , Animales , Presión Sanguínea/efectos de los fármacos , Gelatinasas/metabolismo , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Poro de Transición de la Permeabilidad Mitocondrial , Miocardio/metabolismo , Nefrectomía , Estrés Oxidativo/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo , Insuficiencia Renal Crónica/metabolismo , Transducción de Señal/efectos de los fármacos , Volumen Sistólico/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
12.
J Biochem Mol Toxicol ; 28(11): 522-7, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25130536

RESUMEN

Occupational and environmental exposure to potassium dichromate (K2Cr2O7), a hexavalent chromium compound, can result in liver damage associated with oxidative stress and mitochondrial dysfunction. The purpose of this study was to evaluate the effect of the antioxidant curcumin (400 mg/kg b.w.) on the K2Cr2O7-induced injury, with special emphasis on ascitic fluid accumulation and oxidative phosphorylation mitochondrial enzymes and the adenosine triphosphate (ATP) levels in isolated mitochondria from livers of rats treated with K2Cr2O7 (15 mg/kg b.w.). Thus, curcumin attenuated the ascites generation, prevented the decrease in the activities of aconitase and F1F0 ATPase, and maintained the ATP levels. The activity of complex II was not completely reestablished by curcumin, whereas complexes III and IV activities were unchanged.


Asunto(s)
Ascitis/prevención & control , Curcumina/uso terapéutico , Mitocondrias Hepáticas/efectos de los fármacos , Dicromato de Potasio/toxicidad , Aconitato Hidratasa/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Ascitis/inducido químicamente , Ascitis/metabolismo , Líquido Ascítico/fisiología , Riñón/efectos de los fármacos , Hígado/efectos de los fármacos , Masculino , Mitocondrias Hepáticas/enzimología , Mitocondrias Hepáticas/metabolismo , Estrés Oxidativo/fisiología , ATPasas de Translocación de Protón/metabolismo , Ratas , Ratas Wistar
13.
Arch Pharm (Weinheim) ; 347(12): 873-84, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25243820

RESUMEN

Curcumin, a phenolic compound extracted from Curcuma longa, is commonly used in Asia as a spice and pigment and has several biological functions, particularly antioxidant properties. It has been reported that curcumin exhibits bifunctional antioxidant properties related to its capability to react directly with reactive oxygen species (ROS) and also to its ability to induce the expression of cytoprotective and antioxidant proteins through the transcription factor nuclear factor-erythroid-2-related factor 2 (Nrf2). Recently, it has been postulated that the mitochondrial function and metabolism are associated with Nrf2 and that curcumin has shown activities against mitochondrial dysfunction. The damage in mitochondria has been implicated in the pathogenesis of diseases like diabetes, cancer, aging, and neurodegenerative disorders. This review focuses on some of the most recent findings of curcumin properties that suggest a close relationship of this antioxidant with the mitochondrial function.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Antioxidantes/uso terapéutico , Curcuma , Curcumina/uso terapéutico , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/uso terapéutico , Animales , Antineoplásicos Fitogénicos/aislamiento & purificación , Antioxidantes/aislamiento & purificación , Apoptosis/efectos de los fármacos , Curcuma/química , Curcumina/aislamiento & purificación , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Fitoterapia , Extractos Vegetales/aislamiento & purificación , Plantas Medicinales , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
14.
Discov Oncol ; 15(1): 272, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977545

RESUMEN

Glioblastoma (GBM) is an aggressive form of cancer affecting the Central Nervous System (CNS) of thousands of people every year. Redox alterations have been shown to play a key role in the development and progression of these tumors as Reactive Oxygen Species (ROS) formation is involved in the modulation of several signaling pathways, transcription factors, and cytokine formation. The second-generation oral alkylating agent temozolomide (TMZ) is the first-line chemotherapeutic drug used to treat of GBM, though patients often develop primary and secondary resistance, reducing its efficacy. Antioxidants represent promising and potential coadjutant agents as they can reduce excessive ROS formation derived from chemo- and radiotherapy, while decreasing pharmacological resistance. S-allyl-cysteine (SAC) has been shown to inhibit the proliferation of several types of cancer cells, though its precise antiproliferative mechanisms remain poorly investigated. To date, SAC effects have been poorly explored in GBM cells. Here, we investigated the effects of SAC in vitro, either alone or in combination with TMZ, on several toxic and modulatory endpoints-including oxidative stress markers and transcriptional regulation-in two glioblastoma cell lines from rats, RG2 and C6, to elucidate some of the biochemical and cellular mechanisms underlying its antiproliferative properties. SAC (1-750 µM) decreased cell viability in both cell lines in a concentration-dependent manner, although C6 cells were more resistant to SAC at several of the tested concentrations. TMZ also produced a concentration-dependent effect, decreasing cell viability of both cell lines. In combination, SAC (1 µM or 100 µM) and TMZ (500 µM) enhanced the effects of each other. SAC also augmented the lipoperoxidative effect of TMZ and reduced cell antioxidant resistance in both cell lines by decreasing the TMZ-induced increase in the GSH/GSSG ratio. In RG2 and C6 cells, SAC per se had no effect on Nrf2/ARE binding activity, while in RG2 cells TMZ and the combination of SAC + TMZ decreased this activity. Our results demonstrate that SAC, alone or in combination with TMZ, exerts antitumor effects mediated by regulatory mechanisms of redox activity responses. SAC is also a safe drug for testing in other models as it produces non-toxic effects in primary astrocytes. Combined, these effects suggest that SAC affords antioxidant properties and potential antitumor efficacy against GBM.

15.
Arch Med Res ; 55(3): 102983, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492326

RESUMEN

Maternal obesity predisposes offspring (F1) to cardiovascular disease. To evaluate basal heart function and ischemia-reperfusion (IR) responses in F1 males and females of obese mothers, female Wistar rats (F0) were fed chow or an obesogenic (MO) diet from weaning through pregnancy and lactation. Non-sibling F1 males and females were weaned to chow at postnatal day (PND) 21 and euthanized at PND 550. Offspring of MO mothers (MOF1) rarely survive beyond PND 650. Hearts were immediately isolated from euthanized F1s and subjected to 30 min ischemia with 20 min reperfusion. Retroperitoneal fat, serum triglycerides, glucose, insulin, and insulin resistance were measured. Baseline left ventricular developed pressure (LVDP) was lower in male and female MOF1 than in controls. After global ischemia, LVDP in control (C) male and female F1 recovered 78 and 83%, respectively, while recovery in MO male and female F1 was significantly lower at 28 and 52%, respectively. Following the IR challenge, MO hearts showed a higher functional susceptibility to reperfusion injury, resulting in lower cardiac reserve than controls in both sexes. Female hearts were more resistant to IR. Retroperitoneal fat was increased in male MOF1 vs. CF1. Circulating triglycerides and insulin resistance were increased in male and female MOF1 vs. CF1. These data show that MO programming reduces F1 cardiac reserve associated with age-related insulin resistance in a sex-specific manner.


Asunto(s)
Resistencia a la Insulina , Efectos Tardíos de la Exposición Prenatal , Humanos , Ratas , Femenino , Embarazo , Masculino , Animales , Anciano , Resistencia a la Insulina/fisiología , Ratas Wistar , Obesidad , Insulina , Triglicéridos , Dieta Alta en Grasa , Isquemia , Reperfusión
16.
Mol Neurobiol ; 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38307967

RESUMEN

Mitochondrial dysfunction plays a key role in the development of neurodegenerative disorders. In contrast, the regulation of the endocannabinoid system has been shown to promote neuroprotection in different neurotoxic paradigms. The existence of an active form of the cannabinoid receptor 1 (CB1R) in mitochondrial membranes (mitCB1R), which might exert its effects through the same signaling mechanisms as the cell membrane CB1R, has been shown to regulate mitochondrial activity. Although there is evidence suggesting that some cannabinoids may induce protective effects on isolated mitochondria, substantial evidence on the role of cannabinoids in mitochondria remains to be explored. In this work, we developed a toxic model of mitochondrial dysfunction induced by exposure of brain mitochondria to the succinate dehydrogenase inhibitor 3-nitropropionic acid (3-NP). Mitochondria were also pre-incubated with the endogenous agonist anandamide (AEA) and the synthetic CB1R agonist WIN 55212-2 to evaluate their protective effects. Mitochondrial reduction capacity, reactive oxygen species (ROS) formation, and mitochondrial swelling were assessed as toxic markers. While 3-NP decreased the mitochondrial reduction capacity and augmented mitochondrial ROS formation and swelling, both AEA and WIN 55212-2 ameliorated these toxic effects. To explore the possible involvement of mitCB1R activation on the protective effects of AEA and WIN 55212-2, mitochondria were also pre-incubated in the presence of the selective CB1R antagonist AM281, which completely reverted the protective effects of the cannabinoids to levels similar to those evoked by 3-NP. These results show partial protective effects of cannabinoids, suggesting that mitCB1R activation may be involved in the recovery of compromised mitochondrial activity, related to reduction of ROS formation and further prevention of mitochondrial swelling.

17.
J Bioenerg Biomembr ; 45(5): 441-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23536162

RESUMEN

Bax, a pro-apoptotic member of the Bcl-2 family of proteins has the ability to form transmembrane pores large enough to allow cytochrome c (Cyt c) release, as well as to activate the mitochondrial permeability transition pore (mPTP); however, no differential study has been conducted to clarify which one of these mechanisms predominates over the other in the same system. In the present study, we treated isolated mitochondria from MCF7 cells with recombinant protein Bax and tested the efficacy of the mPTP inhibitor cyclosporin A (CsA) and of the Bax channel blocker (Bcb) to inhibit cytochrome c release. We also, induced apoptosis in MCF7 cell cultures with TNF-α plus cycloheximide to determine the effect of such compounds in apoptosis induction via mPTP or Bax oligomerization. Cytochrome c release was totally prevented by CsA and partially by Bcb when apoptosis was induced with recombinant Bax in isolated mitochondria from MCF7 cells. CsA increased the number of living cells in cell culture, as compared with the effect of Bax channel blocker. These results indicate that mPTP activation is the predominant pathway for Bax-induced cytochrome c release from MCF7 mitochondria and for apoptosis induction in the whole cell.


Asunto(s)
Citocromos c/metabolismo , Mitocondrias/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Cicloheximida/farmacología , Ciclosporina/farmacología , Humanos , Células MCF-7 , Mitocondrias/efectos de los fármacos , Proteínas Recombinantes/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Proteína X Asociada a bcl-2/antagonistas & inhibidores , Proteína X Asociada a bcl-2/farmacología
18.
J Card Fail ; 19(2): 135-46, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23384639

RESUMEN

BACKGROUND: Postconditioning (PostC) cardioprotection has been related to up-regulation of survival kinases; however, the efficacy of PostC and the role of ERK1/2 (extracellular signal-regulated kinase 1/2) remain to be substantiated in hypertension states that may produce "pathologic remodeling." Therefore, in this work we compared PostC effect and assessed the role of ERK1/2 activation in a model of hypertensive dilated cardiomyopathy (DCM), versus normal (Sham) and compensated hypertrophy (CH) models. METHODS AND RESULTS: Rats were subjected to angiotensin II administration until development of cardiovascular diseases. Then, isolated hearts underwent ischemia followed by PostC and reperfusion. PostC maintained the double product in all groups. PostC reduced infarct size from 36.16 ± 3% to 9.8% ± 2.2 in Sham, from 37.5 ± 2.4% to 12 ± 3% in CH, and from 40 ± 2.4% to 11.55 ± 3% in DCM. Inhibition of the mitogen-activated protein kinase kinase (MEK)/ERK1/2 pathway had different effects on PostC-conferred cardioprotection in the evaluated groups. Interestingly, although phosphatidylinositol-3-kinase activation was negligible in PostC DCM hearts, we observed Akt activation. CONCLUSIONS: PostC confers cardioprotection through alternative survival pathways in normal and CH hearts, and cardiac function recovery in DCM relies mainly on MEK/ERK1/2 cascade. Down-regulation of phosphatidylinositide 3-kinase does not affect the cardioprotective response in DCM, because MEK/ERK1/2 cascade may convey direct Akt activation, strengthening downstream signaling.


Asunto(s)
Cardiomiopatía Dilatada/enzimología , Hipertensión/enzimología , Poscondicionamiento Isquémico/métodos , Sistema de Señalización de MAP Quinasas/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/prevención & control , Animales , Activación Enzimática/fisiología , Humanos , Masculino , Ratas , Ratas Wistar
19.
Chem Biol Interact ; 382: 110616, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37385402

RESUMEN

Mitochondria-endoplasmic reticulum (ER) communication relies on platforms formed at the ER membrane with the mitochondrial outer membrane contact sites (MERCs). MERCs are involved in several processes including the unfolded protein response (UPR) and calcium (Ca2+) signaling. Therefore, as alterations in MERCs greatly impact cellular metabolism, pharmacological interventions to preserve productive mitochondrial-ER communication have been explored to maintain cellular homeostasis. In this regard, extensive information has documented the beneficial and potential effects of sulforaphane (SFN) in different pathological conditions; however, controversy has arisen regarding the effect of this compound on mitochondria-ER interaction. Therefore, in this study, we investigated whether SFN could induce changes in MERCs under normal culture conditions without damaging stimuli. Our results indicate that non-cytotoxic concentration of 2.5 µM SFN increased ER stress in cardiomyocytes in conjunction with a reductive stress environment, that diminishes ER-mitochondria association. Additionally, reductive stress promotes Ca2+ accumulation in the ER of cardiomyocytes. These data show an unexpected effect of SFN on cardiomyocytes grown under standard culture conditions, promoted by the cellular redox unbalance. Therefore, it is necessary to rationalize the use of compounds with antioxidant properties to avoid triggering cellular side effects.


Asunto(s)
Mitocondrias , Miocitos Cardíacos , Miocitos Cardíacos/metabolismo , Retículo Endoplásmico , Respuesta de Proteína Desplegada , Estrés del Retículo Endoplásmico
20.
Cells ; 12(3)2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36766835

RESUMEN

Caveolae-associated signaling toward mitochondria contributes to the cardioprotective mechanisms against ischemia-reperfusion (I/R) injury induced by ischemic postconditioning. In this work, we evaluated the role that the actin-cytoskeleton network exerts on caveolae-mitochondria communication during postconditioning. Isolated rat hearts subjected to I/R and to postconditioning were treated with latrunculin A, a cytoskeleton disruptor. Cardiac function was compared between these hearts and those exposed only to I/R and to the cardioprotective maneuver. Caveolae and mitochondria structures were determined by electron microscopy and maintenance of the actin-cytoskeleton was evaluated by phalloidin staining. Caveolin-3 and other putative caveolae-conforming proteins were detected by immunoblot analysis. Co-expression of caveolin-3 and actin was evaluated both in lipid raft fractions and in heart tissue from the different groups. Mitochondrial function was assessed by respirometry and correlated with cholesterol levels. Treatment with latrunculin A abolishes the cardioprotective postconditioning effect, inducing morphological and structural changes in cardiac tissue, reducing F-actin staining and diminishing caveolae formation. Latrunculin A administration to post-conditioned hearts decreases the interaction between caveolae-forming proteins, the co-localization of caveolin with actin and inhibits oxygen consumption rates in both subsarcolemmal and interfibrillar mitochondria. We conclude that actin-cytoskeleton drives caveolae signaling to mitochondria during postconditioning, supporting their functional integrity and contributing to cardiac adaption against reperfusion injury.


Asunto(s)
Caveolas , Daño por Reperfusión , Ratas , Animales , Caveolas/metabolismo , Actinas/metabolismo , Caveolina 3/metabolismo , Citoesqueleto/metabolismo , Caveolina 1/metabolismo , Daño por Reperfusión/metabolismo , Mitocondrias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA