Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Pathol ; 249(4): 472-484, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31400222

RESUMEN

Transforming growth factor-ß (TGFß) has been reported to be dysregulated in malformed ureters. There exists, however, little information on whether altered TGFß levels actually perturb ureter development. We therefore hypothesised that TGFß has functional effects on ureter morphogenesis. Tgfb1, Tgfb2 and Tgfb3 transcripts coding for TGFß ligands, as well as Tgfbr1 and Tgfbr2 coding for TGFß receptors, were detected by quantitative polymerase chain reaction in embryonic mouse ureters collected over a wide range of stages. As assessed by in situ hybridisation and immunohistochemistry, the two receptors were detected in embryonic urothelia. Next, TGFß1 was added to serum-free cultures of embryonic day 15 mouse ureters. These organs contain immature smooth muscle and urothelial layers and their in vivo potential to grow and acquire peristaltic function can be replicated in serum-free organ culture. Such organs therefore constitute a suitable developmental stage with which to define roles of factors that affect ureter growth and functional differentiation. Exogenous TGFß1 inhibited growth of the ureter tube and generated cocoon-like dysmorphogenesis. RNA sequencing suggested that altered levels of transcripts encoding certain fibroblast growth factors (FGFs) followed exposure to TGFß. In serum-free organ culture exogenous FGF10 but not FGF18 abrogated certain dysmorphic effects mediated by exogenous TGFß1. To assess whether an endogenous TGFß axis functions in developing ureters, embryonic day 15 explants were exposed to TGFß receptor chemical blockade; growth of the ureter was enhanced, and aberrant bud-like structures arose from the urothelial tube. The muscle layer was attenuated around these buds, and peristalsis was compromised. To determine whether TGFß effects were limited to one stage, explants of mouse embryonic day 13 ureters, more primitive organs, were exposed to exogenous TGFß1, again generating cocoon-like structures, and to TGFß receptor blockade, again generating ectopic buds. As for the mouse studies, immunostaining of normal embryonic human ureters detected TGFßRI and TGFßRII in urothelia. Collectively, these observations reveal unsuspected regulatory roles for endogenous TGFß in embryonic ureters, fine-tuning morphogenesis and functional differentiation. Our results also support the hypothesis that the TGFß up-regulation reported in ureter malformations impacts on pathobiology. Further experiments are needed to unravel the intracellular signalling mechanisms involved in these dysmorphic responses. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Morfogénesis , Factor de Crecimiento Transformador beta/metabolismo , Uréter/anomalías , Uréter/metabolismo , Anomalías Urogenitales/metabolismo , Urotelio/anomalías , Urotelio/metabolismo , Animales , Diferenciación Celular , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Edad Gestacional , Humanos , Ratones , Técnicas de Cultivo de Órganos , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/farmacología , Uréter/efectos de los fármacos , Anomalías Urogenitales/genética , Urotelio/efectos de los fármacos
2.
J Pathol ; 245(4): 491-501, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29774544

RESUMEN

Peritoneal fibrosis is a common complication of abdominal and pelvic surgery, and can also be triggered by peritoneal dialysis, resulting in treatment failure. In these settings, fibrosis is driven by activated myofibroblasts that are considered to be partly derived by mesothelial-to-mesenchymal transition (MMT). We hypothesized that, if the molecular signature of MMT could be better defined, these insights could be exploited to block this pathological cellular transition. Rat peritoneal mesothelial cells were purified by the use of an antibody against HBME1, a protein present on mesothelial cell microvilli, and streptavidin nanobead technology. After exposure of sorted cells to a well-known mediator of MMT, transforming growth factor (TGF)-ß1, RNA sequencing was undertaken to define the transcriptomes of mesothelial cells before and during early-phase MMT. MMT was associated with dysregulation of transcripts encoding molecules involved in insulin-like growth factor (IGF) and bone morphogenetic protein (BMP) signalling. The application of either recombinant BMP4 or IGF-binding protein 4 (IGFBP4) ameliorated TGF-ß1-induced MMT in culture, as judged from the retention of epithelial morphological and molecular phenotypes, and reduced migration. Furthermore, peritoneal tissue from peritoneal dialysis patients showed less prominent immunostaining than control tissue for IGFBP4 and BMP4 on the peritoneal surface. In a mouse model of TGF-ß1-induced peritoneal thickening, BMP4 immunostaining on the peritoneal surface was attenuated as compared with healthy controls. Finally, genetic lineage tracing of mesothelial cells was used in mice with peritoneal injury. In this model, administration of BMP4 ameliorated the injury-induced shape change and migration of mesothelial cells. Our findings demonstrate a distinctive MMT signature, and highlight the therapeutic potential for BMP4, and possibly IGFBP4, to reduce MMT. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/genética , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos , Fibrosis Peritoneal/genética , Peritoneo/metabolismo , Transcriptoma , Animales , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Movimiento Celular , Forma de la Célula , Células Cultivadas , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Humanos , Proteína 4 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 4 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Ratones Endogámicos C57BL , Fibrosis Peritoneal/metabolismo , Fibrosis Peritoneal/patología , Peritoneo/efectos de los fármacos , Peritoneo/patología , Ratas Wistar , Factor de Crecimiento Transformador beta1/farmacología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-25278816

RESUMEN

BACKGROUND: A reduction of ADA2 activity due to autosomal recessive loss of function mutations in CECR1 results in a newly described vasculopathic phenotype reminiscent of polyarteritis nodosa, with manifestations ranging from fatal systemic vasculitis with multiple strokes in children to limited cutaneous disease in middle-aged individuals. Evidence indicates that ADA2 is essential for the endothelial integrity of small vessels. However, CECR1 is not expressed, nor is the ADA2 protein detectable, in cultured human endothelial cells, thus implicating additional cell types or circulating factors in disease pathogenesis. METHODS: Considering the phenotypic overlap of ADA2 deficiency with the type I interferonopathy Aicardi-Goutières syndrome due to mutations in SAMHD1, we looked for the presence of an interferon signature in the peripheral blood of two newly ascertained ADA2-deficient patients. RESULTS: We identified biallelic CECR1 mutations in two patients consistent with ADA2 deficiency. Both patients demonstrated an upregulation of interferon stimulated gene transcripts in peripheral blood. More strikingly however, genome-wide analysis revealed a marked overexpression of neutrophil-derived genes, suggesting that the vasculitis seen in ADA2 deficiency may be an indirect effect resulting from chronic and marked activity of neutrophils. CONCLUSIONS: We hypothesise that ADA2 may act as a regulator of neutrophil activation, and that a reduction of ADA2 activity results in significant endothelial damage via a neutrophil-driven process.


Asunto(s)
Adenosina Desaminasa/deficiencia , Agammaglobulinemia/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Mutación/genética , Activación Neutrófila/genética , Neutrófilos/patología , Inmunodeficiencia Combinada Grave/genética , Adenosina Desaminasa/sangre , Adenosina Desaminasa/genética , Agammaglobulinemia/sangre , Alelos , Niño , Estudio de Asociación del Genoma Completo , Humanos , Interferones/sangre , Masculino , Proteínas de Unión al GTP Monoméricas/genética , Proteína 1 que Contiene Dominios SAM y HD , Inmunodeficiencia Combinada Grave/sangre , Vasculitis/sangre , Vasculitis/genética , Adulto Joven
4.
Arthritis Res Ther ; 12(1): R22, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20149220

RESUMEN

INTRODUCTION: Nucleus pulposus (NP) cells have a phenotype similar to articular cartilage (AC) cells. However, the matrix of the NP is clearly different to that of AC suggesting that specific cell phenotypes exist. The aim of this study was to identify novel genes that could be used to distinguish bovine NP cells from AC and annulus fibrosus (AF) cells, and to further determine their expression in normal and degenerate human intervertebral disc (IVD) cells. METHODS: Microarrays were conducted on bovine AC, AF and NP cells, using Affymetrix Genechip(R) Bovine Genome Arrays. Differential expression levels for a number of genes were confirmed by quantitative real time polymerase chain reaction (qRT-PCR) on bovine, AC, AF and NP cells, as well as separated bovine NP and notochordal (NC) cells. Expression of these novel markers were further tested on normal human AC, AF and NP cells, and degenerate AF and NP cells. RESULTS: Microarray comparisons between NP/AC&AF and NP/AC identified 34 NP-specific and 49 IVD-specific genes respectively that were differentially expressed > or =100 fold. A subset of these were verified by qRT-PCR and shown to be expressed in bovine NC cells. Eleven genes (SNAP25, KRT8, KRT18, KRT19, CDH2, IBSP, VCAN, TNMD, BASP1, FOXF1 & FBLN1) were also differentially expressed in normal human NP cells, although to a lesser degree. Four genes (SNAP25, KRT8, KRT18 and CDH2) were significantly decreased in degenerate human NP cells, while three genes (VCAN, TNMD and BASP1) were significantly increased in degenerate human AF cells. The IVD negative marker FBLN1 was significantly increased in both degenerate human NP and AF cells. CONCLUSIONS: This study has identified a number of novel genes that characterise the bovine and human NP and IVD transcriptional profiles, and allows for discrimination between AC, AF and NP cells. Furthermore, the similarity in expression profiles of the separated NP and NC cell populations suggests that these two cell types may be derived from a common lineage. Although interspecies variation, together with changes with IVD degeneration were noted, use of this gene expression signature will benefit tissue engineering studies where defining the NP phenotype is paramount.


Asunto(s)
Condrocitos/citología , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , Disco Intervertebral/citología , Disco Intervertebral/metabolismo , Animales , Cartílago Articular/citología , Cartílago Articular/metabolismo , Bovinos , Condrocitos/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Disco Intervertebral/patología , Degeneración del Disco Intervertebral/patología , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Análisis de Componente Principal , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA