Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 22(17): 6972-6981, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36018814

RESUMEN

A family of coordination polymers (CPs) based on dynamic structural elements are of great fundamental and commercial interest addressing modern problems in controlled molecular separation, catalysis, and even data processing. Herein, the endurance and fast structural dynamics of such materials at ambient conditions are still a fundamental challenge. Here, we report on the design of a series of Cu-based CPs [Cu(bImB)Cl2] and [Cu(bImB)2Cl2] with flexible ligand bImB (1,4-bis(imidazol-1-yl)butane) packed into one- and two-dimensional (1D, 2D) structures demonstrating dimensionality mediated flexibility and reversible structural transformations. Using the laser pulses as a fast source of activation energy, we initiate CP heating followed by anisotropic thermal expansion and 0.2-0.8% volume changes with the record transformation rates from 2220 to 1640 s-1 for 1D and 2D CPs, respectively. The endurance over 103 cycles of structural transformations, achieved for the CPs at ambient conditions, allows demonstrating optical fiber integrated all-optical data processing.

2.
ACS Appl Mater Interfaces ; 12(24): 27485-27492, 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32463652

RESUMEN

Nanotubes of self-assembled dipeptides exemplified by diphenylalanine (FF) demonstrate a wide range of useful functional properties, such as high Young's moduli, strong photoluminescence, remarkable piezoelectricity and pyroelectricity, optical waveguiding, etc., and became the object of intensive research due to their ability to combine electronic and biological functions in the same material. Two types of nanoconfined water molecules (bound water directly interacting with the peptide backbone and free water located inside nanochannels) are known to play a key role in the self-assembly of FF. Bound water provides its structural integrity, whereas movable free water influences its functional response. However, the intrinsic mechanism of water motion in FF nanotubes remained elusive. In this work, we study the sorption properties of FF nanotubes directly considering them as a microporous material and analyze the free water self-diffusion at different temperatures. We found a change in the regime of free water diffusion, which is attributed to water cluster size in the nanochannels. Small clusters of less than five molecules per unit cell exhibit ballistic diffusion, whereas, for larger clusters, Fickian diffusion occurs. External conditions of around 40% relative humidity at 30 °C enable the formation of such large clusters, for which the diffusion coefficient reaches 1.3 × 10-10 m2 s-1 with an activation energy of 20 kJ mol-1, which increases to attain 3 × 10-10 m2 s-1 at 65 °C. The observed peculiarities of water self-diffusion along the narrow FF nanochannels endow this class of materials with a new functionality. Possible applications of FF nanotubes in nanofluidic devices are discussed.


Asunto(s)
Nanotubos de Péptidos/química , Péptidos/química , Fenilalanina/química
3.
J Mol Model ; 26(11): 326, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-33140163

RESUMEN

DFT (VASP) and semi-empirical (HyperChem) calculations for the L- and D-chiral diphenylalanine (L-FF and D-FF) nanotube (PNT) structures, empty and filled with water/ice clusters, are presented and analyzed. The results obtained show that after optimization, the dipole moment and polarization of both chiral type L-FF and D-FF PNT and embedded water/ice cluster are enhanced; the water/ice cluster acquire the helix-like structure similar as L-FF and D-FF PNT. Ferroelectric properties of tubular water/ice helix-like-cluster obtained after optimization inside L-FF and D-FF PNT and total L-FF and D-FF PNT with embedded water/ice cluster are discussed.


Asunto(s)
Simulación por Computador , Modelos Moleculares , Nanotubos de Péptidos/química , Agua/química , Interacciones Hidrofóbicas e Hidrofílicas , Fenilalanina/química , Termodinámica
4.
Artículo en Inglés | MEDLINE | ID: mdl-31484115

RESUMEN

The formation of the domain structure by electron beam irradiation in thermally depolarized Ce-doped strontium barium niobate single crystals with free surface and surface covered by a dielectric layer has been studied. The dependences of the domain sizes and domain depth on the irradiated dose have been measured. The circular shape of the isolated domains was obtained. The isotropic domain growth was attributed to step generation at the wall as a result of merging with the residual nanodomains which existed after thermal depolarization. The linear dose dependence of the switched area was attributed to the screening of the depolarization field by the injected charge. The electrostatic interaction of the approaching charged domain walls was revealed. The better quality of the domain patterns was achieved in the samples with electron localization in the dielectric layer. The obtained results can be applied for the creation of precise domain patterns with arbitrary orientation and shape to produce nonlinear optical devices with improved characteristics.

5.
J Mol Model ; 25(7): 199, 2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31240406

RESUMEN

The structure and properties of diphenylalanine (FF) peptide nanotubes (PNT) based on phenylalanine were investigated by various molecular modeling methods. The main approach employed semi-empirical quantum-chemical methods (PM3 and AM1). Ab initio, density functional theory methods and molecular mechanical approaches were also used. Both model structures and structures extracted from experimental crystallographic databases obtained by X-ray methods were examined. A comparison of optimized model structures and structures obtained by natural self-assembly revealed important differences depending on chirality: D and L. In both the cases, the effect of chirality on the results of self-assembly of FF PNT was established: PNT based on the D-FF has large condensation energy E0 in the transverse direction, and form thicker and shorter PNT bundles than those based on L-FF. A topological difference was established: model PNT were optimized into structures consisting of rings, while naturally self-assembled PNT consisted of helical turns. The latter nanotubes differed from the original L-FF and D-FF and formed helix structures of different chirality signs in accordance with the alternation rule of chirality due to macromolecule hierarchy. A topological transition between ring and helix turn PNT structures is discussed: self-assembled natural helix structures are favorable and their energy is lower by a value of the order of one to several eV.


Asunto(s)
Modelos Moleculares , Conformación Molecular , Nanotubos de Péptidos/química , Fenilalanina/análogos & derivados , Algoritmos , Teoría Funcional de la Densidad , Dipéptidos , Modelos Teóricos , Nanoestructuras/química , Fenilalanina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA