Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Wellcome Open Res ; 7: 133, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37521535

RESUMEN

In living cells, the genetic information stored in the DNA sequence is always associated with chromosomal and extra-chromosomal epigenetic information. Chromatin is formed by the DNA and associated proteins, in particular histones. Covalent histone modifications are important bearers of epigenetic information and as such have been increasingly studied since about the year 2000. One of the principal techniques to gather information about the association between DNA and modified histones is chromatin immunoprecipitation (ChIP), also combined with massive sequencing (ChIP-Seq). Automated ChIPmentation procedure is a convenient alternative to native chromatin immunoprecipitation (N-ChIP). It is now routinely used for ChIP-Seq in many model species, using in general roughly 10 6 cells per experiment. Such high cell numbers are sometimes difficult to produce. Using the human parasite Schistosoma mansoni, whose production requires sacrificing animals and should therefore be kept to a minimum, we show here that automated ChIPmentation is suitable for limited biological material. We define the operational limit as ≥20,000 Schistosoma cells. We also present a streamlined protocol for the preparation of ChIP input libraries.

2.
Biotechniques ; 66(6): 295-302, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31039627

RESUMEN

CRISPR/Cas9 technology has evolved as the most powerful approach to generate genetic models both for fundamental and preclinical research. Despite its apparent simplicity, the outcome of a genome-editing experiment can be substantially impacted by technical parameters and biological considerations. Here, we present guidelines and tools to optimize CRISPR/Cas9 genome-targeting efficiency and specificity. The nature of the target locus, the design of the single guide RNA and the choice of the delivery method should all be carefully considered prior to a genome-editing experiment. Different methods can also be used to detect off-target cleavages and decrease the risk of unwanted mutations. Together, these optimized tools and proper controls are essential to the assessment of CRISPR/Cas9 genome-editing experiments.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Animales , Técnicas de Inactivación de Genes/métodos , Sitios Genéticos , Células HEK293 , Humanos , ARN Guía de Kinetoplastida/genética , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA