Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
BMC Med Imaging ; 14: 2, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24410997

RESUMEN

BACKGROUND: Size and shape of the treatment zone after Irreversible electroporation (IRE) can be difficult to depict due to the use of multiple applicators with complex spatial configuration. Exact geometrical definition of the treatment zone, however, is mandatory for acute treatment control since incomplete tumor coverage results in limited oncological outcome. In this study, the "Chebyshev Center Concept" was introduced for CT 3d rendering to assess size and position of the maximum treatable tumor at a specific safety margin. METHODS: In seven pig livers, three different IRE protocols were applied to create treatment zones of different size and shape: Protocol 1 (n = 5 IREs), Protocol 2 (n = 5 IREs), and Protocol 3 (n = 5 IREs). Contrast-enhanced CT was used to assess the treatment zones. Technique A consisted of a semi-automated software prototype for CT 3d rendering with the "Chebyshev Center Concept" implemented (the "Chebyshev Center" is the center of the largest inscribed sphere within the treatment zone) with automated definition of parameters for size, shape and position. Technique B consisted of standard CT 3d analysis with manual definition of the same parameters but position. RESULTS: For Protocol 1 and 2, short diameter of the treatment zone and diameter of the largest inscribed sphere within the treatment zone were not significantly different between Technique A and B. For Protocol 3, short diameter of the treatment zone and diameter of the largest inscribed sphere within the treatment zone were significantly smaller for Technique A compared with Technique B (41.1 ± 13.1 mm versus 53.8 ± 1.1 mm and 39.0 ± 8.4 mm versus 53.8 ± 1.1 mm; p < 0.05 and p < 0.01). For Protocol 1, 2 and 3, sphericity of the treatment zone was significantly larger for Technique A compared with B. CONCLUSIONS: Regarding size and shape of the treatment zone after IRE, CT 3d rendering with the "Chebyshev Center Concept" implemented provides significantly different results compared with standard CT 3d analysis. Since the latter overestimates the size of the treatment zone, the "Chebyshev Center Concept" could be used for a more objective acute treatment control.


Asunto(s)
Electroporación/métodos , Imagenología Tridimensional/métodos , Hígado/diagnóstico por imagen , Neoplasias/patología , Tomografía Computarizada por Rayos X/métodos , Animales , Humanos , Procesamiento de Imagen Asistido por Computador , Neoplasias/diagnóstico por imagen , Porcinos
2.
Int J Hyperthermia ; 29(7): 620-8, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24001114

RESUMEN

PURPOSE: This paper outlines a theoretical approach for optimisation of the coagulation zone for thermal ablation procedures and considerations for its practical application. METHODS: The theoretical approach is outlined in the Cartesian coordinate system. Considerations for practical application are implemented. The optimised coagulation zone is defined as the bare coverage of tumour mass plus a safety margin. The eccentricity of coagulation centre (ECC) is defined as the distance between the coagulation centre and the tumour centre. The direction of the applicator shaft is determined based on the x-axis direction. The tumour centre and coagulation centre are defined within the x/y-plane. The distance between coagulation margin (applicator tip) and tumour margin is called parallel offset (PAO). RESULTS: For spherical coagulation shapes, a linear relationship exists between optimised coagulation diameter and ECC. An exponential relationship exists between optimised coagulation volume and ECC. A complex relationship was found between PAO and determinants of ECC, which are ex and ey. PAO is an extremely important parameter, which allows for determination of the optimal applicator tip position in relation to the tumour margin. It can be calculated in such a manner that the optimised coagulation zone is minimised by neutralising dislocation of the coagulation centre in applicator shaft direction. The latter can be realised by withdrawing or further inserting the applicator shaft. CONCLUSIONS: The presented concept can be used to optimise the extent of the coagulation zone for thermal ablation procedures after positioning of the applicator. Its inherent advantage is the simple adjustment of the applicator shaft, which obviates the need for a repuncture.


Asunto(s)
Coagulación Sanguínea , Hipertermia Inducida , Neoplasias/terapia , Modelos Teóricos , Neoplasias/sangre
3.
J Vasc Interv Radiol ; 22(12): 1751-7, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21982204

RESUMEN

PURPOSE: To determine the effect of tissue perfusion on microwave ablation lesions in an experimental in vivo study in porcine kidneys. MATERIALS AND METHODS: Twelve kidneys of six pigs were studied. In each animal, two microwave ablations were created in one kidney without limitation of tissue perfusion (group 1). In the other kidney, two microwave ablations were performed with interruption of blood flow (group 2). All microwave ablations were performed with identical system parameters (eg, temperature control mode, ablation time of 80 s, and temperature of 110°C). The animals were euthanized 3 hours later. The kidneys were harvested and cut into 2-3-mm transverse slices. Microwave ablation zone dimensions (eg, length, width, and volume) and shape (eg, sphericity ratio) and corresponding variability were compared between groups. RESULTS: Microwave ablation areas were significantly longer (41.6 mm ± 4.0 vs 34.2 mm ± 5.9; P < .01) and wider (16.6 mm ± 1.2 vs 12.2 mm ± 2.1; P < .001) in group 2 than in group 1. Similarly, microwave ablation volume was significantly greater in group 2 compared with group 1 (6.7 cm(3) ± 1.0 vs 3.3 cm(3) ± 1.2; P < .001). Ablation area shapes were similar between groups (sphericity ratio, 2.57 ± 0.42 vs 2.39 ± 0.34). Ablation area variabilities were also comparable between groups (volume variance of 1.32 vs 0.93; sphericity ratio variance of 0.18 vs 0.11). CONCLUSIONS: After interruption of blood flow, microwave ablation areas are significantly larger than those achieved without limitation of tissue perfusion. Microwave ablation area shape and variability were comparable between study groups.


Asunto(s)
Ablación por Catéter/métodos , Riñón/fisiopatología , Riñón/efectos de la radiación , Animales , Velocidad del Flujo Sanguíneo/fisiología , Riñón/irrigación sanguínea , Microondas/uso terapéutico , Porcinos
4.
Int J Comput Assist Radiol Surg ; 8(4): 607-20, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23588509

RESUMEN

PURPOSE: The Medical Imaging Interaction Toolkit (MITK) has been available as open-source software for almost 10 years now. In this period the requirements of software systems in the medical image processing domain have become increasingly complex. The aim of this paper is to show how MITK evolved into a software system that is able to cover all steps of a clinical workflow including data retrieval, image analysis, diagnosis, treatment planning, intervention support, and treatment control. METHODS: MITK provides modularization and extensibility on different levels. In addition to the original toolkit, a module system, micro services for small, system-wide features, a service-oriented architecture based on the Open Services Gateway initiative (OSGi) standard, and an extensible and configurable application framework allow MITK to be used, extended and deployed as needed. A refined software process was implemented to deliver high-quality software, ease the fulfillment of regulatory requirements, and enable teamwork in mixed-competence teams. RESULTS: MITK has been applied by a worldwide community and integrated into a variety of solutions, either at the toolkit level or as an application framework with custom extensions. The MITK Workbench has been released as a highly extensible and customizable end-user application. Optional support for tool tracking, image-guided therapy, diffusion imaging as well as various external packages (e.g. CTK, DCMTK, OpenCV, SOFA, Python) is available. MITK has also been used in several FDA/CE-certified applications, which demonstrates the high-quality software and rigorous development process. CONCLUSIONS: MITK provides a versatile platform with a high degree of modularization and interoperability and is well suited to meet the challenging tasks of today's and tomorrow's clinically motivated research.


Asunto(s)
Algoritmos , Sistemas de Computación , Diagnóstico por Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Programas Informáticos , Terapia Asistida por Computador/métodos , Interfaz Usuario-Computador , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA