Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 98(3): e0140123, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38358287

RESUMEN

Since 2020, clade 2.3.4.4b highly pathogenic avian influenza H5N8 and H5N1 viruses have swept through continents, posing serious threats to the world. Through comprehensive analyses of epidemiological, genetic, and bird migration data, we found that the dominant genotype replacement of the H5N8 viruses in 2020 contributed to the H5N1 outbreak in the 2021/2022 wave. The 2020 outbreak of the H5N8 G1 genotype instead of the G0 genotype produced reassortment opportunities and led to the emergence of a new H5N1 virus with G1's HA and MP genes. Despite extensive reassortments in the 2021/2022 wave, the H5N1 virus retained the HA and MP genes, causing a significant outbreak in Europe and North America. Furtherly, through the wild bird migration flyways investigation, we found that the temporal-spatial coincidence between the outbreak of the H5N8 G1 virus and the bird autumn migration may have expanded the H5 viral spread, which may be one of the main drivers of the emergence of the 2020-2022 H5 panzootic.IMPORTANCESince 2020, highly pathogenic avian influenza (HPAI) H5 subtype variants of clade 2.3.4.4b have spread across continents, posing unprecedented threats globally. However, the factors promoting the genesis and spread of H5 HPAI viruses remain unclear. Here, we found that the spatiotemporal genotype replacement of H5N8 HPAI viruses contributed to the emergence of the H5N1 variant that caused the 2021/2022 panzootic, and the viral evolution in poultry of Egypt and surrounding area and autumn bird migration from the Russia-Kazakhstan region to Europe are important drivers of the emergence of the 2020-2022 H5 panzootic. These findings provide important targets for early warning and could help control the current and future HPAI epidemics.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Subtipo H5N8 del Virus de la Influenza A , Gripe Aviar , Animales , Aves , Genotipo , Virus de la Influenza A/fisiología , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/fisiología , Subtipo H5N8 del Virus de la Influenza A/genética , Subtipo H5N8 del Virus de la Influenza A/fisiología , Gripe Aviar/epidemiología , Gripe Aviar/virología , Filogenia , Aves de Corral
2.
PLoS Pathog ; 18(12): e1011046, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36525468

RESUMEN

Circulation of seasonal influenza is the product of complex interplay among multiple drivers, yet characterizing the underlying mechanism remains challenging. Leveraging the diverse seasonality of A(H3N2) virus and abundant climatic space across regions in China, we quantitatively investigated the relative importance of population susceptibility, climatic factors, and antigenic change on the dynamics of influenza A(H3N2) through an integrative modelling framework. Specifically, an absolute humidity driven multiscale transmission model was constructed for the 2013/2014, 2014/2015 and 2016/2017 influenza seasons that were dominated by influenza A(H3N2). We revealed the variable impact of absolute humidity on influenza transmission and differences in the occurring timing and magnitude of antigenic change for those three seasons. Overall, the initial population susceptibility, climatic factors, and antigenic change explained nearly 55% of variations in the dynamics of influenza A(H3N2). Specifically, the additional variation explained by the initial population susceptibility, climatic factors, and antigenic change were at 33%, 26%, and 48%, respectively. The vaccination program alone failed to fully eliminate the summer epidemics of influenza A(H3N2) and non-pharmacological interventions were needed to suppress the summer circulation. The quantitative understanding of the interplay among driving factors on the circulation of influenza A(H3N2) highlights the importance of simultaneous monitoring of fluctuations for related factors, which is crucial for precise and targeted prevention and control of seasonal influenza.


Asunto(s)
Epidemias , Gripe Humana , Humanos , Gripe Humana/epidemiología , Subtipo H3N2 del Virus de la Influenza A , Estaciones del Año , China/epidemiología
3.
J Med Virol ; 96(5): e29657, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38727035

RESUMEN

The H1N1pdm09 virus has been a persistent threat to public health since the 2009 pandemic. Particularly, since the relaxation of COVID-19 pandemic mitigation measures, the influenza virus and SARS-CoV-2 have been concurrently prevalent worldwide. To determine the antigenic evolution pattern of H1N1pdm09 and develop preventive countermeasures, we collected influenza sequence data and immunological data to establish a new antigenic evolution analysis framework. A machine learning model (XGBoost, accuracy = 0.86, area under the receiver operating characteristic curve = 0.89) was constructed using epitopes, physicochemical properties, receptor binding sites, and glycosylation sites as features to predict the antigenic similarity relationships between influenza strains. An antigenic correlation network was constructed, and the Markov clustering algorithm was used to identify antigenic clusters. Subsequently, the antigenic evolution pattern of H1N1pdm09 was analyzed at the global and regional scales across three continents. We found that H1N1pdm09 evolved into around five antigenic clusters between 2009 and 2023 and that their antigenic evolution trajectories were characterized by cocirculation of multiple clusters, low-level persistence of former dominant clusters, and local heterogeneity of cluster circulations. Furthermore, compared with the seasonal H1N1 virus, the potential cluster-transition determining sites of H1N1pdm09 were restricted to epitopes Sa and Sb. This study demonstrated the effectiveness of machine learning methods for characterizing antigenic evolution of viruses, developed a specific model to rapidly identify H1N1pdm09 antigenic variants, and elucidated their evolutionary patterns. Our findings may provide valuable support for the implementation of effective surveillance strategies and targeted prevention efforts to mitigate the impact of H1N1pdm09.


Asunto(s)
Antígenos Virales , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Humanos , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Gripe Humana/virología , Gripe Humana/inmunología , Antígenos Virales/genética , Antígenos Virales/inmunología , Aprendizaje Automático , Evolución Molecular , Epítopos/genética , Epítopos/inmunología , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/virología , COVID-19/inmunología , Pandemias/prevención & control , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , SARS-CoV-2/genética , SARS-CoV-2/inmunología
4.
Sci Technol Adv Mater ; 25(1): 2330339, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633881

RESUMEN

To successfully engineer large-sized tissues, establishing vascular structures is essential for providing oxygen, nutrients, growth factors and cells to prevent necrosis at the core of the tissue. The diameter scale of the biofabricated vasculatures should range from 100 to 1,000 µm to support the mm-size tissue while being controllably aligned and spaced within the diffusion limit of oxygen. In this review, insights regarding biofabrication considerations and techniques for engineered blood vessels will be presented. Initially, polymers of natural and synthetic origins can be selected, modified, and combined with each other to support maturation of vascular tissue while also being biocompatible. After they are shaped into scaffold structures by different fabrication techniques, surface properties such as physical topography, stiffness, and surface chemistry play a major role in the endothelialization process after transplantation. Furthermore, biological cues such as growth factors (GFs) and endothelial cells (ECs) can be incorporated into the fabricated structures. As variously reported, fabrication techniques, especially 3D printing by extrusion and 3D printing by photopolymerization, allow the construction of vessels at a high resolution with diameters in the desired range. Strategies to fabricate of stable tubular structures with defined channels will also be discussed. This paper provides an overview of the many advances in blood vessel engineering and combinations of different fabrication techniques up to the present time.


This review covers several aspects and advancements of engineered blood vessel biofabrication, which are essential for establishment of large-sized tissues in different areas of biomedical applications.

5.
Biochem Biophys Res Commun ; 674: 69-74, 2023 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-37413707

RESUMEN

The construction of in vitro capillary network models for drug testing and toxicity evaluation has become a major challenge in the field of tissue engineering. Previously, we discovered a novel phenomenon of hole formation by endothelial cell migration on the surface of fibrin gels. Interestingly, the hole characteristics, such as depth and number, were strongly influenced by the gel stiffness, but the details of hole formation are not to be clarified. In this study, we tried to understand the effect of hydrogel stiffness on the hole formation by dropping collagenase solution onto the surface of the hydrogels because the endothelial cell migration was made possible by the metalloproteinases' digestion. We found that smaller hole structures were formed on stiffer fibrin gels, but larger ones were formed on softer fibrin gels after the hydrogel digestion of the collagenase. This is consistent with our previous results in experiments on hole structures formed by endothelial cells. Furthermore, deep and small hole structures were successfully obtained by optimizing the volume of collagenase solution and incubation time. This unique approach inspired by endothelial cell hole formation may provide new methods of fabricating hydrogels with opening hole structures.


Asunto(s)
Células Endoteliales , Hidrogeles , Hidrogeles/química , Células Endoteliales/metabolismo , Movimiento Celular , Fibrina/metabolismo , Ingeniería de Tejidos/métodos
6.
Brief Bioinform ; 22(5)2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-33885735

RESUMEN

The 2019 novel coronavirus (SARS-CoV-2) has spread rapidly worldwide and was declared a pandemic by the WHO in March 2020. The evolution of SARS-CoV-2, either in its natural reservoir or in the human population, is still unclear, but this knowledge is essential for effective prevention and control. We propose a new framework to systematically identify recombination events, excluding those due to noise and convergent evolution. We found that several recombination events occurred for SARS-CoV-2 before its transfer to humans, including a more recent recombination event in the receptor-binding domain. We also constructed a probabilistic mutation network to explore the diversity and evolution of SARS-CoV-2 after human infection. Clustering results show that the novel coronavirus has diverged into several clusters that cocirculate over time in various regions and that several mutations across the genome are fixed during transmission throughout the human population, including D614G in the S gene and two accompanied mutations in ORF1ab. Together, these findings suggest that SARS-CoV-2 experienced a complicated evolution process in the natural environment and point to its continuous adaptation to humans. The new framework proposed in this study can help our understanding of and response to other emerging pathogens.


Asunto(s)
Evolución Molecular , Recombinación Genética , SARS-CoV-2/genética , COVID-19/virología , Humanos , Filogenia , Reproducibilidad de los Resultados
7.
J Med Virol ; 95(8): e29006, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37548473

RESUMEN

A small percentage of couples who regularly donated blood in China tested positive for HBsAg. Although it is well known that blood donors can acquire hepatitis B virus (HBV) infection from a chronically infected sexual partner, the prevalence of occult hepatitis B infections (OBIs) among blood donations from partners of HBV-infected chronically infected spouses and the risk to blood safety remain poorly understood. Among 212 763 blood donors, 54 pairs of couples (108 donations) were enrolled because one partner tested positive for HBsAg. Several molecular and serological examinations were conducted. The origin of HBV transmission between sexual partners was investigated further. Also evaluated was the potential risk of HBV infection with OBIs. We identified 10 (10/54, 18.6%) sexual partners of chronically infected HBV donors who were positive for HBV DNA, including five samples (9.3%) with OBIs, of which 3 (3/54, 5.6%, 1 in 70 921 donations) passed the routine blood screening tests. Seven of the 10 HBV-DNA-positive couples contracted the virus possibly through sexual or close contact. Among infected couples, immune escape mutations were observed. A high prevalence of OBIs was found among the partners of chronically infected HBV blood donors, posing a potential threat to blood safety.


Asunto(s)
Donantes de Sangre , Seguridad de la Sangre , Hepatitis B , Esposos , Seguridad de la Sangre/estadística & datos numéricos , Hepatitis B/epidemiología , Hepatitis B/prevención & control , Hepatitis B/transmisión , Esposos/estadística & datos numéricos , Prevalencia , China/epidemiología , Donantes de Sangre/estadística & datos numéricos , Virus de la Hepatitis B , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad
8.
Macromol Rapid Commun ; 44(8): e2300025, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36794543

RESUMEN

Embedded extrusion printing provides a versatile platform for fabricating complex hydrogel-based biological structures with living cells. However, the time-consuming process and rigorous storage conditions of current support baths hinder their commercial application. This work reports a novel "out-of-the-box" granular support bath based on chemically crosslinked cationic polyvinyl alcohol (PVA) microgels, which is ready to use by simply dispersing the lyophilized bath in water. Notably, with ionic modification, PVA microgels yield reduced particle size, uniform distribution, and appropriate rheological properties, contributing to high-resolution printing. Following by the lyophilization and re-dispersion process, ion-modified PVA baths recover to its original state, with unchanged particle size, rheological properties, and printing resolution, demonstrating its stability and recoverability. Lyophilization facilitates the long-term storage and delivery of granular gel baths, and enables the application of "out-of-the-box" support materials, which will greatly simplify experimental procedures, avoid labor-intensive and time-consuming operations, thus accelerating the broad commercial development of embedded bioprinting.


Asunto(s)
Microgeles , Ingeniería de Tejidos , Hidrogeles/química , Alcohol Polivinílico/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
9.
Transfus Med ; 33(1): 81-89, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36815535

RESUMEN

BACKGROUND: In China, the vaccinated blood donors have rapidly increased by recent years, which may impact blood safety. The true prevalence of HBV between vaccinated blood donors and non-vaccinated blood donors should be explored. STUDY DESIGN AND METHODS: The samples of blood donors were collected and detected for serologic markers of HBV in the Shenzhen Blood Centre (SZBC). The discrepant results were tested with commercial electrochemiluminescence immunoassay (ELCI) for HBsAg, anti-HBs, HBeAg, Anti-HBe and Anti-HBc, alternative MPX ID NAT, nested PCR, and a quantitative real-time polymerase chain reaction (qPCR) assay for HBV DNA. The serological and molecular characteristics of HBV infected blood donors were analysed, and the effects on blood safety for donors born before and after the implementation of universal HBV vaccination were compared. RESULTS: Out of 242 presumed HBV infected donors from 26 318 donations, 131 (0.49%, [95% CI, 0.43-0.59]) chronic HBV infections (CHB, HBsAg detected with or without DNA), 58 (0.22%, [95% CI, 0.17-0.28]) occult hepatitis B infections (OBI, HBsAg not detected, assume anti-HBc positive and/or anti-HBs with HBV DNA) and 3 (0.011%, [95% CI, 0.0023-0.033]) window period (WP) infections were confirmed respectively. There were 28 CHBs (0.44%), 7 OBIs (0.11%) and 1 WP (0.016%) from vaccinated blood donor and 103 CHBs (0.52%), 51 OBIs (0.26%) and 2 WPs (0.01%) from non-vaccinated blood donor. The HBV+ (CHBs, OBIs and WPs) rate (0.56%) in vaccinated donors was lower than in non-vaccinated donors (0.78%, p < 0.05). The HBsAg titers of vaccinated infected blood donors (Median: 128.8 IU/ml) were much higher than non-vaccinated infected blood donors (58.4 IU/ml). The OBI yield rates in the vaccinated blood donors was significantly lower than the non-vaccinated blood donors (p < 0.05). There 102/124 (82.3%) samples were genotype B, 22/124 (17.7%) were genotype C respectively. There was no significant difference in the distribution of genotype between non-vaccinated blood donors (B/C, 86/17) and vaccinated blood donors (B/C, 23/6; p > 0.05). High frequency of vaccine escape mutations M133L (32.4%) and E164G in S region of genotype B strains and substitution L175S (40.9%) related to vaccine escape in S region of genotype C strains were identified. CONCLUSION: The universal HBV vaccination program markedly reduces the risk of HBV infection in blood donors, and provides a significant guarantee for the safety of blood transfusion. Several important mutations detected related vaccine escape and notable mutations needed further investigated.


Asunto(s)
Donantes de Sangre , Virus de la Hepatitis B , Hepatitis B , Humanos , China/epidemiología , ADN Viral , Hepatitis B/epidemiología , Anticuerpos contra la Hepatitis B , Antígenos de Superficie de la Hepatitis B , Vacunas contra Hepatitis B , Virus de la Hepatitis B/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Vacunación
10.
J Environ Sci (China) ; 128: 139-149, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36801030

RESUMEN

Granular activated carbon (GAC) filtration can be employed to synchronously quench residual H2O2 from the upstream UV/H2O2 process and further degrade dissolved organic matter (DOM). In this study, rapid small-scale column tests (RSSCTs) were performed to clarify the mechanisms underlying the interactions between H2O2 and DOM during the GAC-based H2O2 quenching process. It was observed that GAC can catalytically decompose H2O2, with a long-lasting high efficiency (>80% for approximately 50,000 empty-bed volumes). DOM inhibited GAC-based H2O2 quenching via a pore-blocking effect, especially at high concentrations (10 mg/L), with the adsorbed DOM molecules being oxidized by the continuously generated ·OH; this further deteriorated the H2O2 quenching efficiency. In batch experiments, H2O2 could enhance DOM adsorption by GAC; however, in RSSCTs, it deteriorated DOM removal. This observation could be attributed to the different ·OH exposure in these two systems. It was also observed that aging with H2O2 and DOM altered the morphology, specific surface area, pore volume, and the surface functional groups of GAC, owing to the oxidation effect of H2O2 and ·OH on the GAC surface as well as the effect of DOM. Additionally, the changes in the content of persistent free radicals in the GAC samples were insignificant following different aging processes. This work contributes to enhancing understanding regarding the UV/H2O2-GAC filtration scheme, and promoting the application in drinking water treatment.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Carbón Orgánico , Materia Orgánica Disuelta , Peróxido de Hidrógeno , Adsorción
11.
J Virol ; 95(11)2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33731452

RESUMEN

H9N2 Avian influenza virus (AIV) is regarded as a principal donor of viral genes through reassortment to co-circulating influenza viruses that can result in zoonotic reassortants. Whether H9N2 virus can maintain sustained evolutionary impact on such reassortants is unclear. Since 2013, avian H7N9 virus had caused five sequential human epidemics in China; the fifth wave in 2016-2017 was by far the largest but the mechanistic explanation behind the scale of infection is not clear. Here, we found that, just prior to the fifth H7N9 virus epidemic, H9N2 viruses had phylogenetically mutated into new sub-clades, changed antigenicity and increased its prevalence in chickens vaccinated with existing H9N2 vaccines. In turn, the new H9N2 virus sub-clades of PB2 and PA genes, housing mammalian adaptive mutations, were reassorted into co-circulating H7N9 virus to create a novel dominant H7N9 virus genotype that was responsible for the fifth H7N9 virus epidemic. H9N2-derived PB2 and PA genes in H7N9 virus conferred enhanced polymerase activity in human cells at 33°C and 37°C, and increased viral replication in the upper and lower respiratory tracts of infected mice which could account for the sharp increase in human cases of H7N9 virus infection in the 2016-2017 epidemic. The role of H9N2 virus in the continual mutation of H7N9 virus highlights the public health significance of H9N2 virus in the generation of variant reassortants of increasing zoonotic potential.IMPORTANCEAvian H9N2 influenza virus, although primarily restricted to chicken populations, is a major threat to human public health by acting as a donor of variant viral genes through reassortment to co-circulating influenza viruses. We established that the high prevalence of evolving H9N2 virus in vaccinated flocks played a key role, as donor of new sub-clade PB2 and PA genes in the generation of a dominant H7N9 virus genotype (G72) with enhanced infectivity in humans during the 2016-2017 N7N9 virus epidemic. Our findings emphasize that the ongoing evolution of prevalent H9N2 virus in chickens is an important source, via reassortment, of mammalian adaptive genes for other influenza virus subtypes. Thus, close monitoring of prevalence and variants of H9N2 virus in chicken flocks is necessary in the detection of zoonotic mutations.

12.
BMC Infect Dis ; 22(1): 331, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379168

RESUMEN

BACKGROUND: A range of strict nonpharmaceutical interventions (NPIs) were implemented in many countries to combat the coronavirus 2019 (COVID-19) pandemic. These NPIs may also be effective at controlling seasonal influenza virus infections, as influenza viruses have the same transmission path as severe acute respiratory syndrome coronavirus 2. The aim of this study was to evaluate the effects of different NPIs on the control of seasonal influenza. METHODS: Data for 14 NPIs implemented in 33 countries and the corresponding influenza virological surveillance data were collected. The influenza suppression index was calculated as the difference between the influenza positivity rate during its period of decline from 2019 to 2020 and during the influenza epidemic seasons in the previous 9 years. A machine learning model was developed using an extreme gradient boosting tree regressor to fit the NPI and influenza suppression index data. The SHapley Additive exPlanations tool was used to characterize the NPIs that suppressed the transmission of influenza. RESULTS: Of all NPIs tested, gathering limitations had the greatest contribution (37.60%) to suppressing influenza transmission during the 2019-2020 influenza season. The three most effective NPIs were gathering limitations, international travel restrictions, and school closures. For these three NPIs, their intensity threshold required to generate an effect were restrictions on the size of gatherings less than 1000 people, ban of travel to all regions or total border closures, and closing only some categories of schools, respectively. There was a strong positive interaction effect between mask-wearing requirements and gathering limitations, whereas merely implementing a mask-wearing requirement, and not other NPIs, diluted the effectiveness of mask-wearing requirements at suppressing influenza transmission. CONCLUSIONS: Gathering limitations, ban of travel to all regions or total border closures, and closing some levels of schools were found to be the most effective NPIs at suppressing influenza transmission. It is recommended that the mask-wearing requirement be combined with gathering limitations and other NPIs. Our findings could facilitate the precise control of future influenza epidemics and other potential pandemics.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , COVID-19/epidemiología , COVID-19/prevención & control , Humanos , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Pandemias/prevención & control , Estaciones del Año
13.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36012290

RESUMEN

Head and neck squamous cell carcinomas (HNSCCs) are a type of cancer originating in the mucosal epithelium of the mouth, pharynx, and larynx, the sixth most common cancer in the world. However, there is no effective treatment for HNSCCs. More than 90% of HNSCCs overexpress epidermal growth factor receptors (EGFRs). Although small molecule inhibitors and monoclonal antibodies have been developed to target EGFRs, few EGFR-targeted therapeutics are approved for clinical use. Ferroptosis is a new kind of programmed death induced by the iron catalyzed excessive peroxidation of polyunsaturated fatty acids. A growing body of evidence suggests that ferroptosis plays a pivotal role in inhibiting the tumor process. However, whether and how ferroptosis-inducers (FINs) play roles in hindering HNSCCs are unclear. In this study, we analyzed the sensitivity of different HNSCCs to ferroptosis-inducers. We found that only tongue squamous cell carcinoma cells and laryngeal squamous cell carcinoma cells, but not nasopharyngeal carcinoma cells, actively respond to ferroptosis-inducers. The different sensitivities of HNSCC cells to ferroptosis induction may be attributed to the expression of KRAS and ferritin heavy chain (FTH1) since a high level of FTH1 is associated with the poor prognostic survival of HNSCCs, but knocked down FTH1 can promote HNSCC cell death. Excitingly, the ferroptosis-inducer RSL3 plays a synthetic role with EGFR monoclonal antibody Cetuximab to inhibit the survival of nasopharyngeal carcinoma cells (CNE-2), which are insensitive to both ferroptosis induction and EGFR inhibition due to a high level of FTH1 and a low level of EGFR, respectively. Our findings prove that FTH1 plays a vital role in ferroptosis resistance in HNSCCs and also provide clues to target HNSCCs resistant to ferroptosis induction and/or EGFR inhibition.


Asunto(s)
Carcinoma de Células Escamosas , Ferroptosis , Neoplasias de Cabeza y Cuello , Neoplasias de la Lengua , Anticuerpos Monoclonales/uso terapéutico , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Cetuximab/farmacología , Cetuximab/uso terapéutico , Receptores ErbB/metabolismo , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de la Lengua/tratamiento farmacológico
14.
BMC Infect Dis ; 21(1): 83, 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33468062

RESUMEN

BACKGROUND: Hepatitis B virus (HBV) infection is a major concern for blood safety in high-prevalence HBV countries such as China. In Shenzhen, dual hepatitis B surface antigen (HBsAg) enzyme-linked immunosorbent assays (ELISAs) have been adopted in parallel with nucleic acid testing (NAT) for donors for over a decade. A small proportion of blood donors test reactive (R) for HBsAg but negative through routine NAT, which can lead to HBV infection with an extremely low viral load. OBJECTIVES: We aimed to investigate and analyze the molecular characteristics of HBV among blood donors that tested HBsAg R in a single ELISA test. METHODS: Blood donations were evaluated in this study if confirmed HBsAg R through one of two ELISA kits. Samples with non-reactive (NR) results by NAT were collected and tested for HBsAg by chemiluminescent microparticle immunoassay (CLIA) with a neutralization test. The level of HBsAg was further assessed by electrochemiluminescence immunoassay (ECLIA). The viral basic core promoter (BCP) and pre-core (PC) and S regions were amplified by nested PCR. Quantitative real-time PCR (qPCR) for viral load determination and individual donation (ID)-NAT were adopted simultaneously. HBsAg was confirmed with CLIA, ECLIA, nested PCR, qPCR, and ID-NAT. RESULTS: Of the 100,252 donations, 38 and 41 were identified as HBsAg R with Wantai and DiaSorin ELISA kits, respectively. Seventy-nine (0.077%, 79/100,252) blood samples with ELISA R-NR and NAT NR results were enrolled in the study. Of these, 17 (21.5%,17/79) were confirmed as HBsAg-positive. Of the 14 genotyped cases, 78.6% (11/14) were genotype B, and C and D were observed in two and one sample, respectively. Mutations were found in the S gene, including Y100C, Y103I, G145R, and L175S, which can affect the detection of HBsAg. A high-frequency mutation, T1719G (93.3%), was detected in the BCP/PC region, which reduced the viral replication. CONCLUSION: A small number of blood samples with HBsAg ELISA R-NR and NAT NR results were confirmed as HBV infection, viral nucleic acids were found in most of the samples through routine NAT methods. It is necessary to employ more sensitive and specific assays for the detection of HBV infection among blood donors.


Asunto(s)
Donantes de Sangre , Antígenos de Superficie de la Hepatitis B/sangre , Virus de la Hepatitis B/genética , Hepatitis B , China , ADN Viral/genética , Ensayo de Inmunoadsorción Enzimática , Humanos , Técnicas de Amplificación de Ácido Nucleico , Filogenia , Reacción en Cadena de la Polimerasa/métodos
15.
Small ; 16(24): e1907434, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32372510

RESUMEN

In recent decades, tissue engineering techniques have attracted much attention in the construction of 3D tissues or organs. However, even though precise control of cell locations in 3D has been achieved, the organized cell locations are easily destroyed because of the cell migration during the cell culture period. In human body, basement membranes (BMs) maintain the precise cell locations in 3D (compartmentalization). Constructing artificial BMs that mimic the structure and biofunctions of natural BMs remains a major challenge. Here, a nanometer-sized artificial BM through layer-by-layer assembly of collagen type IV (Col-IV) and laminin (LM), chosen because they are the main components of natural BMs, is reported. This multilayered Col-IV/LM nanofilm imitates natural BM structure closely, showing controllable and similar components, thickness, and fibrous network. The Col-IV/LM nanofilms have high cell adhesion properties and maintain the spreading morphology effectively. Furthermore, the barrier effect of preventing cell migration but permitting effective cell-cell crosstalk between fibroblasts and endothelial cells demonstrates the ability of Col-IV/LM nanofilms for cell compartmentalization in 3D tissues, providing more reliable tissue models for evaluating drug efficacy, nanotoxicology, and implantation.


Asunto(s)
Células Endoteliales , Membranas Artificiales , Membrana Basal , Colágeno Tipo IV , Humanos , Ingeniería de Tejidos
16.
Transfusion ; 60(7): 1633-1638, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32358857

RESUMEN

BACKGROUND: Discrepancies can occur with the use of clinical human immunodeficiency virus (HIV) diagnostic reagents for the HIV window period (WP; time from RNA to antibody detection by diagnostic or blood screening assays). Antiretroviral therapy (ART) during acute HIV infection can impact HIV-specific antibodies, antigens, and DNA/RNA detection. In this study, an HIV WP blood donor who initiated ART was monitored, evaluating the immunological and nucleic acid testing (NAT) results for early ART and discussing the potential effects on blood safety. STUDY DESIGN AND METHODS: This was a follow-up study of a HIV WP donor detected 36 hours after high-risk sexual behavior, who was subsequently treated with ART. Immunological and NAT methods were comparatively analyzed. RESULTS: The 4th generation HIV serologic assays were positive at Day 11, and the 3rd generation domestic anti-HIV assay was positive at Day 33. Individual donation (ID) NAT and minipool (MP) NAT of six samples were reactive, but 12-sample MP-NAT was nonreactive. ART resulted in a slow decline of HIV RNA, but HIV DNA was still detected on Day 757. CONCLUSION: After ART, ID-NAT was more sensitive than MP-NAT or serologic detection; however, HIV DNA detection was more sensitive, with DNA but not RNA persistently detectable.


Asunto(s)
Antirretrovirales/administración & dosificación , Donantes de Sangre , Seguridad de la Sangre , ADN Viral/sangre , Infecciones por VIH , ARN Viral/sangre , Adulto , Estudios de Seguimiento , Infecciones por VIH/sangre , Infecciones por VIH/diagnóstico , Infecciones por VIH/tratamiento farmacológico , Humanos , Masculino , Técnicas de Amplificación de Ácido Nucleico
17.
Transfusion ; 60(7): 1476-1482, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32358842

RESUMEN

BACKGROUND: Hepatitis B virus (HBV) infection is one of the major concerns for the safety of blood transfusion in high-prevalent countries such as in China. Prior studies outside of China have shown hepatitis B surface antigen (HBsAg) false-reactive rate of 0.02% to 0.04%. Similarly, false-negative HBsAg and HBV DNA results may occur in infected donors. Our study analyzed HBsAg enzyme-linked immunosorbent assay (ELISA)-reactive but NAT-negative donations in Shenzhen Blood Center, China. STUDY DESIGN AND METHODS: HBsAg ELISA-positive/NAT-negative plasma samples identified from screening 101,025 donations during 2017-2018 were analyzed by molecular and serologic tests including neutralization, chemiluminescence immunoassays, and various HBV DNA amplification assays. Molecular characterizations of HBsAg-positive/NAT-negative samples were determined by quantitative polymerase chain reaction (qPCR) and nested PCR amplification of the basic core and precore promotor regions (295 base pairs) and HBsAg (S) region (496 base pairs). RESULTS: Screening of 101,025 eligible blood donations identified 157 (0.16%, 95% confidence interval, 0.13%-0.18%) HBsAg ELISA-positive/NAT-negative plasma samples; of those, 71 (45.2%) were HBsAg confirmed positive by further HBsAg testing and DNA positive by molecular tests with increased sensitivity. Of the 71, all but one was antibody to hepatitis B core antigen reactive without antibody to hepatitis B surface antigen, yielding one recent (window-period) HBV infection. Of the remaining donations, 80 (51%) were not considered as HBV-infected donors, and 6 (3.8%) were interpreted as indeterminate since HBsAg results were discordant with unconfirmed HBV DNA results. In the 71 confirmed positives, HBsAg levels ranged from 0.05 to 400 IU/mL and HBV DNA from 6 to 2654 IU/mL; however, the correlation between the two was weak (R2 = 0.24). CONCLUSION: Fewer than half of HBsAg ELISA-positive/NAT-negative samples were confirmed as HBsAg positive. Our study demonstrates that in highly HBV-endemic countries, assays with high sensitivity and specificity may be required.


Asunto(s)
Donantes de Sangre , ADN Viral/sangre , Selección de Donante , Antígenos de Superficie de la Hepatitis B/sangre , Virus de la Hepatitis B/metabolismo , Hepatitis B/sangre , Adulto , China , Femenino , Humanos , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa
18.
Biomacromolecules ; 21(12): 4923-4932, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33099998

RESUMEN

In the human body, highly organized tissues rely on the compartmentalization effect of basement membranes (BMs) that separate different types of cells. We recently reported an artificial basement membrane (A-BM) composed of type-IV collagen and laminin (Col-IV/LM), which are the main components of natural BMs, for cell compartmentalization in three-dimensional (3D) tissues. However, such compartmentalized structures can be maintained only for 3 days, probably due to the degradation issues. In this study, a robust A-BM was fabricated by in situ cross-linking the Col-IV/LM layer-by-layer (LbL) nanofilms in 3D tissues by transglutaminase. The effects of molecular size and configuration on the permeability of obtained A-BMs were comprehensively studied using polystyrene nanoparticles (PS NPs) and dextran with various hydrodynamic diameters, as well as albumin. The findings agreed well with the known size-selective behavior of the glomerular basement membrane. Cross-linked Col-IV/LM nanofilms demonstrate improved stability and a more powerful barrier effect to maintain cell compartmentalization for organized 3D tissues. This in vitro A-BM exhibit great potentials for the design of more complex compartmentalized 3D tissues, for understanding the unique cell-cell cross talk through BMs, and for providing a more reliable 3D tissue model for new drug screening and other in vitro physiological studies.


Asunto(s)
Colágeno Tipo IV , Membranas Artificiales , Ingeniería de Tejidos , Membrana Basal , Humanos , Laminina , Permeabilidad
19.
BMC Infect Dis ; 20(1): 581, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32762656

RESUMEN

BACKGROUND: Human T-cell lymphotropic virus (HTLV) remains a major safety concern for blood supplies. Despite many HTLV positive cases being reported in southeastern China, the detection of HTLV has not been prioritized in routine blood screening. Additionally, data on the prevalence of HTLV infection among blood donors is also limited. The objective of this study was to investigate the prevalence of HTLV among blood donors in three Chinese provinces through their representative blood centers, to evaluate the feasibility of chemiluminescence immunoassay (CLIA) for blood screening. METHODS: From November 2018 to March 2019, blood plasma samples were collected from Hebei, Changsha, and Shenzhen blood centers and were screened for the HTLV-1/2 antibody using a CLIA and enzyme-linked immunosorbent assay (ELISA). This was followed by confirmatory tests using INNO-LIA HTLV I/II. RESULTS: A total of 59,929 blood donations were collected and screened for HTLV-1/2. The reactive rate of CLIA and ELISA among donations in the Shenzhen blood center (0.0943%, 27/28,621) was higher than Hebei (0.0248%, 4/16,144), and Changsha (0.0198%, 3/15,164) (p < 0.05). After confirmation, 3 samples were confirmed as indeterminate for HTLV antibodies, and only one sample from the Shenzhen blood center was confirmed as HTLV-1. The overall prevalence of HTLV-1/2 was 1.67 per 100,000 (1/59,929). The HTLV-infected blood came from a 32-year-old first-time female donor with a high school degree, who belonged to the SHE ethnic minority and was born in the Fujian province. CONCLUSIONS: In summary, the overall prevalence of HTLV-1/2 among blood donors in the three blood centers in China remains relatively low. However, blood donations with positive or indeterminate results for HTLV antibodies reminded us of the importance of HTLV screening among blood donors in China.


Asunto(s)
Donantes de Sangre , Infecciones por HTLV-I/diagnóstico , Infecciones por HTLV-I/epidemiología , Infecciones por HTLV-II/diagnóstico , Infecciones por HTLV-II/epidemiología , Virus Linfotrópico T Tipo 1 Humano/inmunología , Virus Linfotrópico T Tipo 2 Humano/inmunología , Salud Rural , Adolescente , Adulto , China/epidemiología , Ensayo de Inmunoadsorción Enzimática , Femenino , Infecciones por HTLV-I/etnología , Infecciones por HTLV-I/virología , Infecciones por HTLV-II/etnología , Infecciones por HTLV-II/virología , Humanos , Mediciones Luminiscentes , Masculino , Tamizaje Masivo/métodos , Persona de Mediana Edad , Grupos Minoritarios , Prevalencia , Servicios de Salud Rural , Adulto Joven
20.
Phys Rev Lett ; 123(2): 027003, 2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-31386504

RESUMEN

We study vortex bound states in three-dimensional (3D) superconducting Dirac semimetals with time reversal symmetry. We find that there exist robust gapless vortex bound states propagating along the vortex line in the s-wave superconducting state. We refer to this newly found phase as the quasi-1D nodal vortex line phase. According to the Altland-Zirnbauer classification, the phase is characterized by a topological index (ν;N) at k_{z}=0 and k_{z}=π, where ν is the Z_{2} topological invariant for a 0D class-D system and N is the Z topological invariant for a 0D class-A system. Furthermore, we show that the vortex end Majorana zero mode can coexist with the quasi-1D nodal phase in certain types of Dirac semimetals. The possible experimental observations and material realization of such nodal vortex line states are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA