Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Sci Food Agric ; 102(3): 908-919, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34235749

RESUMEN

BACKGROUND: Rhamnolipids (RLS), well known as glycolipid biosurfactants, display low toxicity, high biodegradability, and strong antibacterial properties. This study was carried out to evaluate the use of RLS supplementation as a substitute for antibiotics, and particularly to evaluate its effects on growth performance, immunity, intestinal barrier function, and metabolome composition in broilers. RESULTS: The RLS treatment improved the growth performance, immunity, and intestinal barrier function in broilers. The 16S rRNA sequencing revealed that the genus Alistipes was the dominant genus in broilers treated by RLS. An ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS)-based metabolomic analysis indicated that the sphingolipid metabolism, glycine, serine, and threonine metabolism, the gycerophospholipid metabolism, and the tryptophan metabolism were changed in broilers that were treated with RLS. CONCLUSION: l-Tryptophan may be the medium for RLS to regulate the growth and physiological metabolism. Rhamnolipids can be used as a potential alternative to antibiotics, with similar functions to antibiotics in the diet of broilers. The optimal level of supplemented RLS in the diet was 1000 mg kg-1 . © 2021 Society of Chemical Industry.


Asunto(s)
Pollos/crecimiento & desarrollo , Pollos/inmunología , Glucolípidos/administración & dosificación , Intestinos/inmunología , Metaboloma/efectos de los fármacos , Alimentación Animal/análisis , Animales , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/aislamiento & purificación , Pollos/metabolismo , Pollos/microbiología , Suplementos Dietéticos/análisis , Microbioma Gastrointestinal/efectos de los fármacos , Intestinos/metabolismo , Intestinos/microbiología , Metabolómica
2.
Front Vet Sci ; 9: 846649, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35265699

RESUMEN

We aimed to study the effects of dietary Bacillus coagulans (B. coagulans) and Lactobacillus plantarum (L. plantarum) on broilers challenged by Escherichia coli lipopolysaccharide (LPS). One-day-old Cobb 500 chicks (360) were divided randomly into three treatment groups for 47 days: no supplementation (control, CON), B. coagulans supplementation (BC), and L. plantarum supplementation (LA). Broilers were routinely fed for 42 days and intraperitoneally injected with 500 µg LPS per kg body weight at 43, 45, and 47 days of age, respectively. Samples were collected 3 h after the last injection. At 1-21 days of age, the ADG in the BC and LA groups was higher than that in the CON group, and the feed to gain ratio (F/G) in the BC group was significantly decreased (P < 0.05). Compared with that in CON birds, the ADG was increased and the F/G was decreased in the BC and LA birds at 22-42 and 1-42 days of age, respectively (P < 0.05). After LPS stimulation, the endotoxin (ET), diamine oxidase (DAO), and D-lactic acid (D-LA) levels in the BC group were lower than those in the CON group (P < 0.05). The IgY, IgA, and IgM contents in the BC group and the IgY and IgM contents in the LA group were higher than those in the CON group (P < 0.05). The pro-inflammatory factor and interferon-ß (IFN-ß) contents (P < 0.05) decreased, and the anti-inflammatory factor content in the serum (P < 0.05) increased in the BC and LA groups. Compared with the CON and LA treatments, the BC treatment increased the concentrations of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT), and decreased that of malondialdehyde (MDA) (P < 0.05). In contrast with the CON treatment, the BC and LA treatments increased the abundance of Ruminococcaceae and reduced that of Desulfovibrio (P < 0.05). Moreover, BC increased the abundance of beneficial bacteria. Overall, supplementation with B. coagulans and L. plantarum promoted the growth of broilers, improved their immunity and antioxidant capacity, and alleviated the LPS-stimulated inflammatory response by regulating the intestinal flora.

3.
Antibiotics (Basel) ; 10(6)2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34073759

RESUMEN

We aimed to investigate the effects of Clostridium butyricum-, Bacillus subtilis-, and Bacillus licheniformis-based potential probiotics on the growth performance, intestinal morphology, immune responses, and caecal short chain fatty acids (SCFAs) and microbial structure in broiler chickens. Three treatment groups containing a total of 1200 one-day-old AA broilers were included: birds fed with a basal diet only (Con), birds fed with added 1010 probiotics cfu/kg (ProL), and birds fed with added 1011 probiotics cfu/kg (ProH). The dietary probiotics significantly improved the final and average body weights and serum immunoglobulins A, M, and Y. The probiotics also enhanced the ileal morphology and improved the caecal acetate, butyrate, and propionate contents. Furthermore, 16S rRNA sequencing revealed that dietary compound probiotics modulated the caecal microflora composition as follows: (1) all birds shared 2794 observed taxonomic units; (2) treatment groups were well separated in the PCA and PCoA analysis; (3) the relative abundance of Parabacteroides, Ruminococcaceae_UCG-014, Barnesiella, Odoribacter, [Eubacterium_coprostanoligenes_group], [Ruminococcus]_torques_group, and Butyricimonas significantly varied between treatments. The compound probiotics improved the growth performance, serum immune responses, the ratio of ileal villus height to crypt depth, and major caecal SCFAs in broiler chickens. The dietary C. butyricum-, B. subtilis-, and B. licheniformis-based probiotics improved overall broiler health and would benefit the poultry industry.

4.
Front Immunol ; 11: 610934, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33363546

RESUMEN

Grape seed is rich in vitamin E, flavonoids, and proanthocyanidins and has the potential to be used as an antibiotic substitute in broilers. We investigated the effects of grape seed proanthocyanidin extract (GSPE) on growth performance, immune responses, cecal microflora, and serum metabolism in early stage broilers. Data indicated that GSPE improved broiler growth performance by strengthening antioxidant capacity, enhancing immune responses, and increasing cecal short chain fatty acids. 16S rRNA sequencing indicated that GSPE changed the predominant cecal microflora and induced the metabolism of amino acids, lipids, and carbohydrates. An UPLC-Q-TOF/MS-based metabolomics analysis identified 23 serum metabolites (mainly related to lipid, amino acid, and alkaloid) were extremely changed by GSPE treatment. The correlations between the changes of cecal microflora and serum metabolites in birds fed with GSPE were analyzed. Hence, GSPE potentially provides active ingredients that may be used as antibiotic substitute and reduces environmental pollution by grape by-products.


Asunto(s)
Bacterias/crecimiento & desarrollo , Ciego/microbiología , Pollos/sangre , Pollos/microbiología , Suplementos Dietéticos , Microbioma Gastrointestinal , Extracto de Semillas de Uva/administración & dosificación , Metaboloma , Proantocianidinas/administración & dosificación , Alimentación Animal , Crianza de Animales Domésticos , Animales , Bacterias/genética , Biomarcadores/sangre , Pollos/crecimiento & desarrollo , Metabolómica , Ribotipificación
5.
Artículo en Inglés | MEDLINE | ID: mdl-26819705

RESUMEN

BACKGROUND: Colibacillosis caused by enterotoxigenic Escherichia coli (E. coli) results in economic losses in the poultry industry. Antibiotics are usually used to control colibacillosis, however, E. coli has varying degrees of resistance to different antibiotics. Therefore the use of probiotics is becoming accepted as an alternative to antibiotics. In this study, we evaluated the effects of Clostridium butyricum (C. butyricum) on growth performance, immune response, intestinal barrier function, and digestive enzyme activity in broiler chickens challenged with Escherichia coli (E. coli) K88. METHODS: The chickens were randomly divided into four treatment groups for 28 days. Negative control treatment (NC) consisted of birds fed a basal diet without E. coli K88 challenge and positive control treatment (PC) consisted of birds fed a basal diet and challenged with E. coli K88. C. butyricum probiotic treatment (CB) consisted of birds fed a diet containing 2 × 10(7) cfu C. butyricum/kg of diet and challenged with E. coli K88. Colistin sulfate antibiotic treatment (CS) consisted of birds fed a diet containing 20 mg colistin sulfate/kg of diet and challenged with E. coli K88. RESULTS: The body weight (BW) and average day gain (ADG) in the broilers of CB group were higher (P < 0.05) than the broilers in the PC group overall except the ADG in the 14-21 d post-challenge. The birds in CB treatment had higher (P < 0.05) concentration of tumor necrosis factor-α (TNF-α) at 3 and 7 d post-challenge, and higher (P < 0.05) concentration of interleukin-4 (IL-4) at 14 d post-challenge than those in the PC treatment group. The concentration of serum endotoxin in CB birds was lower (P < 0.05) at 21 d post-challenge, and the concentrations of serum diamine oxidase in CB birds were lower (P < 0.05) at 14 and 21 d post-challenge than in PC birds. Birds in CB treatment group had higher (P < 0.05) jejunum villi height than those in PC, NC, or CS treatment at 7, 14, and 21 d post-challenge. In comparison to PC birds, the CB birds had lower (P < 0.05) jejunum crypt depth during the whole experiment. The birds in CB or CS treatment group had higher (P < 0.05) activities of amylase and protease at 3, 7, and 14 d post-challenge, and higher (P < 0.05) activity of lipase at 3, 7 d post-challenge than PC birds. CONCLUSIONS: In all, these results indicate that dietary supplementation with C. butyricum promotes immune response, improves intestinal barrier function, and digestive enzyme activities in broiler chickens challenged with E. coli K88. There is no significant difference between the C. butyricum probiotic treatment and the colistin sulfate antibiotic treatment. Therefore, the C. butyricum probiotic may be an alternative to antibiotic for broiler chickens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA