RESUMEN
BACKGROUND: Systemic lupus erythematosus (SLE) is a common autoimmune disease, and its pathogenesis remains unclear. The alteration of genetic materials is believed to play a role in SLE development. This study evaluated the association between the genetic variants of microRNA-21 (miR-21) and microRNA-155 (miR-155) and SLE. METHODS: The SNaPshot genotyping method was used to detect the genotypes of selected SNPs in patients and controls. The expression of miR-21 and miR-155 was analyzed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The functional annotation and the biological effects of SNPs were assessed by HaploReg V4.1 and Regulome DB V2.0 software. The Hardy-Weinberg equilibrium test was used to gather statistics, and odds ratios (ORs) and 95% confidence intervals (CIs) were evaluated by logistic regression. RESULTS: The distribution difference of TA genotype in rs767649 was observed (TA vs. T/T: OR = 0.68, 95%CI, 0.48-0.95, p = 0.026). There was a significant difference in the T/A + A/A (T/A + A/A vs. T/T: OR = 0.68, 95%CI, 0.49-0.94, p = 0.020). A significant difference in T allele distribution was found in the depressed complement of SLE (T vs. A: OR = 0.67, 95%CI, 0.47-0.95, p = 0.026). There were significant differences in genetic variants of rs13137 between the positive and the negative SSB antibodies (Anti-SSB) (T vs. A: OR = 0.67, 95%CI, 0.47-0.95, p = 0.026; T/A + T/T vs. AA: OR = 2.23, 1.18-4.49, p = 0.013). The expression levels of miR-21 and miR-155 were significantly higher in patients than in controls (p < 0.001). CONCLUSIONS: This study provides novel insight that genetic variants of rs767649 and rs13137 are associated with susceptibility to SLE.
Asunto(s)
Lupus Eritematoso Sistémico , MicroARNs , Estudios de Casos y Controles , China/epidemiología , Frecuencia de los Genes , Predisposición Genética a la Enfermedad/genética , Genotipo , Humanos , Lupus Eritematoso Sistémico/epidemiología , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
The aim of this study was to investigate whether the S100B polymorphisms are associated with systemic lupus erythematous (SLE) in a Chinese population. A total of 313 SLE patients and 396 control subjects were enrolled in the present study. The genotypes of three SNPs (rs9722, rs881827 and rs1051169) in S100B gene were detected by single base extension polymerase chain reaction (SBE-PCR). Serum S100B levels were determined by enzyme-linked immunosorbent assay (ELISA). Rs1051169 was associated with an increased risk of SLE (C vs. G: adjusted OR=1.46, 95% CI, 1.18-1.80, p=0.001; CC vs. GG: adjusted OR=1.99, 95% CI, 1.32-3.02, p=0.001; CC+GC vs. GG: adjusted OR=1.54, 95% CI, 1.13-2.11, p=0.007; CC vs. GC+GG: adjusted OR=1.67, 95% CI, 1.16-2.42, p=0.006). Haplotype analysis showed that the G-G-C haplotype was associated with an increased risk of SLE (OR=1.50, 95% CI, 1.14-1.98, p=0.004). Stratified analyses showed that the rs1051169 polymorphism was associated with an increased risk of neurologic disorder in SLE patients (C vs. G: OR=1.78, 95% CI, 1.22-2.59, p=0.003; GC vs. GG: OR=2.33, 95% CI, 1.14-4.77, P=0.019; CC vs. GG: OR=3.02, 95% CI, 1.39-6.53, p=0.004; CC+GC vs. GG: OR=2.57, 95% CI=1.31-5.04, p=0.005). In addition, SLE patients with neurologic disorder carrying the rs1051169 GC/CC genotypes present a higher serum S100B levels compared with that carrying the GG genotype (p < 0.05). Our results indicate that the rs1051169 polymorphism may be involved in the pathogenesis of SLE.
RESUMEN
Background: Maternal obesity significantly influences fetal development and health later in life; however, the molecular mechanisms behind it remain unclear. This study aims to investigate signature genes related to maternal obesity and fetal programming based on a genomic-wide transcriptional placental study using a combination of different bioinformatics tools. Methods: The dataset (GSE128381) was obtained from Gene Expression Omnibus (GEO). The data of 100 normal body mass index (BMI) and 27 obese mothers were included in the analysis. Differentially expressed genes (DEGs) were evaluated by limma package. Thereafter, functional enrichment analysis was implemented. Then, weighted gene co-expression network analysis (WGCNA) and the least absolute shrinkage and selection operator (LASSO) analysis were used to further screening of signature genes. Simple linear regression analysis was used to assess the correlation between signature genes and newborn birth weight. Gene set enrichment analysis (GSEA) was implemented to study signaling pathways related to signature genes. The expression of the signature genes was also explored in 48 overweight mothers in the same dataset. Results: A total of 167 DEGs were obtained, of which 122 were up-regulated while 45 were down-regulated. The dataset was then clustered into 11 modules by WGCNA, and the MEbrown was found as the most significant module related to maternal obesity and fetal programming (cor = 0.2, p = 0.03). The LASSO analysis showed that PTX3, NCF2, HOXB5, ABCA6, and C1orf162 are signature genes related to maternal obesity and fetal programming, which were increased in the placenta of obese mothers compared to those with normal BMI. The area under the curve (AUC) of the signature genes in the receiver operating characteristic curve (ROC) was 0.709, 0.660, 0.674, 0.667, and 0.717, respectively. Simple linear regression analysis showed that HOXB5 was associated with newborn birth weight. GSEA analysis revealed that these signature genes positively participate in various signaling pathways/functions in the placenta. Conclusion: PTX3, NCF2, HOXB5, ABCA6, and C1orf162 are novel signature genes related to maternal obesity and fetal programming, of which HOXB5 is implicated in newborn birth weight.
RESUMEN
BACKGROUND: Lupus nephritis (LN) is a type of autoimmune disease that impacts the kidneys. Exosomes are valuable for in-depth studies of the pathogenesis of LN. This study aimed to explore miR-181d-5p expression levels in M0 macrophage-derived exosomes and their role in human renal mesangial cells (HRMC) pyroptosis through binding to BCL-2. METHODS: Peripheral blood mononuclear cells (PBMCs) were collected from patients with lupus nephritis (LN) and healthy subjects. Monocytes isolated from these samples were induced into M0 macrophages using recombinant human granulocyte colony-stimulating factor (rhG-CSF). In a parallel process, THP-1 cells were induced into M0 macrophages using Phorbol Myristate Acetate (PMA). LPS- and ATP-stimulated HRMC were used to construct a cell pyroptosis model. We then introduced different miR-181d-5p mimic fragments into the M0 macrophages derived from the THP-1 cells. Subsequently, exosomes from these macrophages were co-cultured with HRMC. To evaluate the impact on HRMC, we conducted proliferation and apoptosis assessments using CellCountingKit-8assay and flow cytometry. The effect of exosomal miR-181d-5p on HRMC pyroptosis was assessed using western blot. The miR-181d-5p and BCL-2 targeting relationship was detected using real-time fluorescence quantitative PCR. IL-6, IL-1ß, and TNF-α levels in cell supernatants were detected using ELISA kits. RESULTS: In this study, we observed an increase in miR-181d-5p levels within exosomes secreted from M0 macrophages obtained by induction of monocytes from LN patients. It was found that miR-181d-5p can target binding to BCL-2. Exosomes with elevated levels of miR-181d-5p contributed to a significant increase in miR-181d-5p within HRMC, facilitating its proliferation and inhibiting apoptosis. Furthermore, exosomes expressing high levels of miR-181d-5p were observed to promote an inflammatory response and pyroptosis in HRMC. Notably, these effects were reversed when the levels of miR-181d-5p in the exosomes were reduced. CONCLUSION: Inhibition of miR-181d-5p, derived from M0 macrophage exosomes, effectively suppresses inflammation and pyroptosis in HRMC. This discovery indicates that miR-181d-5p holds the potential as a valuable target in the development of treatments for Lupus Nephritis (LN).
Asunto(s)
Exosomas , Nefritis Lúpica , MicroARNs , Humanos , Caspasa 1/genética , Células Mesangiales , Piroptosis/genética , Nefritis Lúpica/genética , Exosomas/genética , Leucocitos Mononucleares , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Macrófagos , MicroARNs/genética , Gasderminas , Proteínas de Unión a FosfatoRESUMEN
BACKGROUND: Lupus nephritis (LN) is a common immune disease. The microRNA (miR)-181d-5p is a potential target for treating kidney injury. However, the therapeutic role of miR-181d-5p in LN has not been investigated. This study aimed to investigate the role of miR-181d-5p in targeting mitogen-activated protein kinase 8 (MAPK8) and stimulating the MAPK signaling pathway in LN. METHODS: RT-qPCR was performed to identify the variations in miR-181d-5p expression in peripheral blood mononuclear cells (PBMCs) obtained from 42 LN patients, 30 healthy individuals, 6 MRL/lpr mice and 6 C57BL/6 mice. Western blot was used to detect the effect of miR-181d-5p on the MAPK signaling pathway in THP-1 cells and MRL/lpr mice. Enzyme-linked immunosorbent assay (ELISA) was utilized to detect the effect of miR-181d-5p on antinuclear antibodies and inflammatory factors. A dual-luciferase reporter assay was used to verify whether miR-181d-5p directly targets MAPK8. Flow cytometry was performed to evaluate apoptosis rates in transfected THP-1 cells. RESULTS: miR-181d-5p expression was downregulated in PBMCs of LN patients (P < 0.01) and MRL/lpr mice (P < 0.05). A dual luciferase reporter assay demonstrated that miR-181d-5p inhibits MAPK8 (P < 0.01). Overexpression of miR-181d-5p inhibited the phosphorylation of p38 (P < 0.001) and p44/42 (P < 0.01). Moreover, miR-181d-5p decreased the apoptosis rate of THP-1 cells (P < 0.001), and reduced the secretion of IL-6 (P < 0.01) and TNF-α (P < 0.01). Furthermore, overexpression of miR-181d-5p decreased anti-dsDNA antibody (P < 0.05), anti-Sm antibody (P < 0.01), and fibrosis levels in MRL/lpr mice. CONCLUSION: Upregulation of miR-181d-5p showed anti-inflammatory and anti-apoptotic effects on THP-1 cells in vitro and kidney injury in vivo. These effects were achieved by miR-181d-5p targeting MAPK8 to inhibit phosphorylation of p38 and p44/42. These results may offer new insights for improving therapeutic strategies against lupus nephritis.
Asunto(s)
Nefritis Lúpica , MicroARNs , Ratones , Animales , Humanos , Nefritis Lúpica/genética , Nefritis Lúpica/metabolismo , Proteína Quinasa 8 Activada por Mitógenos , MicroARNs/metabolismo , Leucocitos Mononucleares/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos MRL lpr , Transducción de Señal , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Luciferasas/metabolismoRESUMEN
A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the determination of methylene-diphosphonate (MDP) in rat bone. This method employed derivatization of MDP and allowed rapid and sensitive quantification of MDP in rat shin bone. The analyte was extracted from the bone tissues with phosphoric acid and derivatized to MDP tetramethyl phosphonate using trimethylsilyl diazomethane (TMS-DAM). MDP tetramethyl phosphonate was then quantified by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), with high selectivity, accuracy, and precision. The total run time was 6.5 min. The lower limit of quantification was 2.00 ng/mL. The intra- and inter-assay precision (in RSD) calculated from quality control samples was less than 15%, and the accuracy was between 98.1% and 100.2%. The analytical process for the determination of MDP in rat bone is fully described, which is a pivotal step for further biomedical research on MDP.
RESUMEN
We report a novel shell technique to prepare controllable core-shell nanoparticles. In this technique, the shell is formed when the core reacts with metal ions and Na(2)S(2)O(3) and the size of the core and thickness of the shell can be controlled. Transmission electron microscopy and X-ray diffraction reveal that the shell consists of insoluble complex salts comprising Au(2)S, AuAgS, and Ag(3)AuS(2). The resulting core-shell nanoparticles obtained at different reaction stages demonstrate that the formation of Au(2)S, AuAgS, and Ag(3)AuS(2) shell proceeds from the outside. The morphological evolution of the particles changes significantly with reaction time demonstrating that formation of the shell results from diffusion in the solid shell. The core-shell nanoparticles produced by this technique can be used as nanosensors to detect Ag(+) in aqueous media with high selectivity and sensitivity. The excellent selectivity for Ag(+) is demonstrated by comparing the response to other metal ions. In addition, our evaluation indicates that gold nanorods offer higher sensitivity than gold nanospheres.