Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mol Cancer ; 20(1): 111, 2021 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-34454516

RESUMEN

BACKGROUND: Synthetic lethality describes a genetic interaction between two perturbations, leading to cell death, whereas neither event alone has a significant effect on cell viability. This concept can be exploited to specifically target tumor cells. CRISPR viability screens have been widely employed to identify cancer vulnerabilities. However, an approach to systematically infer genetic interactions from viability screens is missing. METHODS: Here we describe PAn-canceR Inferred Synthetic lethalities (PARIS), a machine learning approach to identify cancer vulnerabilities. PARIS predicts synthetic lethal (SL) interactions by combining CRISPR viability screens with genomics and transcriptomics data across hundreds of cancer cell lines profiled within the Cancer Dependency Map. RESULTS: Using PARIS, we predicted 15 high confidence SL interactions within 549 DNA damage repair (DDR) genes. We show experimental validation of an SL interaction between the tumor suppressor CDKN2A, thymidine phosphorylase (TYMP) and the thymidylate synthase (TYMS), which may allow stratifying patients for treatment with TYMS inhibitors. Using genome-wide mapping of SL interactions for DDR genes, we unraveled a dependency between the aldehyde dehydrogenase ALDH2 and the BRCA-interacting protein BRIP1. Our results suggest BRIP1 as a potential therapeutic target in ~ 30% of all tumors, which express low levels of ALDH2. CONCLUSIONS: PARIS is an unbiased, scalable and easy to adapt platform to identify SL interactions that should aid in improving cancer therapy with increased availability of cancer genomics data.


Asunto(s)
Biología Computacional/métodos , Aprendizaje Automático , Modelos Biológicos , Neoplasias/etiología , Mutaciones Letales Sintéticas , Línea Celular Tumoral , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica/métodos , Predisposición Genética a la Enfermedad , Genómica/métodos , Humanos , Neoplasias/metabolismo
2.
Mol Syst Biol ; 15(12): e8983, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31885201

RESUMEN

Arrayed CRISPR-based screens emerge as a powerful alternative to pooled screens making it possible to investigate a wide range of cellular phenotypes that are typically not amenable to pooled screens. Here, we describe a solid-phase transfection platform that enables CRISPR-based genetic screens in arrayed format with flexible readouts. We demonstrate efficient gene knockout upon delivery of guide RNAs and Cas9/guide RNA ribonucleoprotein complexes into untransformed and cancer cell lines. In addition, we provide evidence that our platform can be easily adapted to high-throughput screens and we use this approach to study oncogene addiction in tumor cells. Finally demonstrating that the human primary cells can also be edited using this method, we pave the way for rapid testing of potential targeted therapies.


Asunto(s)
Edición Génica/instrumentación , Neoplasias/genética , ARN Guía de Kinetoplastida/farmacología , Sistemas CRISPR-Cas , Línea Celular Tumoral , Predisposición Genética a la Enfermedad , Ensayos Analíticos de Alto Rendimiento , Humanos , Fenotipo , Transfección
3.
Int J Mol Sci ; 20(23)2019 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31801300

RESUMEN

Mechanistic approaches to modeling the effects of ionizing radiation on cells are on the rise, promising a better understanding of predictions and higher flexibility concerning conditions to be accounted for. In this work we modified and extended a previously published mechanistic model of cell survival after photon irradiation under hypoxia to account for radiosensitization caused by deficiency or inhibition of DNA damage repair enzymes. The model is shown to be capable of describing the survival data of cells with DNA damage repair deficiency, both under norm- and hypoxia. We find that our parameterization of radiosensitization is invariant under change of oxygen status, indicating that the relevant parameters for both mechanisms can be obtained independently and introduced freely to the model to predict their combined effect.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Reparación del ADN/efectos de la radiación , Proteína Quinasa Activada por ADN/genética , Fotones , Inhibidores de Proteínas Quinasas/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Células A549 , Animales , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Células CHO , Hipoxia de la Célula , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Cricetulus , ADN/genética , ADN/metabolismo , Daño del ADN , Reparación del ADN/efectos de los fármacos , Proteína Quinasa Activada por ADN/deficiencia , Relación Dosis-Respuesta en la Radiación , Expresión Génica , Humanos , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Ratones , Oxígeno/farmacología
4.
Angew Chem Int Ed Engl ; 57(6): 1576-1580, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29271116

RESUMEN

AAA ATPases have pivotal functions in diverse cellular processes essential for survival and proliferation. Revealing strategies for chemical inhibition of this class of enzymes is therefore of great interest for the development of novel chemotherapies or chemical tools. Here, we characterize the compound MSC1094308 as a reversible, allosteric inhibitor of the type II AAA ATPase human ubiquitin-directed unfoldase (VCP)/p97 and the type I AAA ATPase VPS4B. Subsequent proteomic, genetic and biochemical studies indicate that MSC1094308 binds to a previously characterized drugable hotspot of p97, thereby inhibiting the D2 ATPase activity. Our results furthermore indicate that a similar allosteric site exists in VPS4B, suggesting conserved allosteric circuits and drugable sites in both type I and II AAA ATPases. Our results may thus guide future chemical tool and drug discovery efforts for the biomedically relevant AAA ATPases.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Inhibidores Enzimáticos/metabolismo , Proteína que Contiene Valosina/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/antagonistas & inhibidores , ATPasas Asociadas con Actividades Celulares Diversas/genética , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Sitio Alostérico , Sitios de Unión , Complejos de Clasificación Endosomal Requeridos para el Transporte/antagonistas & inhibidores , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Concentración 50 Inhibidora , Mutagénesis Sitio-Dirigida , Unión Proteica , Relación Estructura-Actividad , Proteína que Contiene Valosina/antagonistas & inhibidores
6.
Mol Cancer Ther ; 23(7): 911-923, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38466804

RESUMEN

Ataxia telangiectasia and Rad3-related (ATR) checkpoint kinase inhibitors are in clinical trials. Here we explored the molecular pharmacology and therapeutic combination strategies of the oral ATR inhibitor M1774 (Tuvusertib) with DNA-damaging agents (DDA). As single agent, M1774 suppressed cancer cell viability at nanomolar concentrations, showing greater activity than ceralasertib and berzosertib, but less potency than gartisertib and elimusertib in the small cell lung cancer H146, H82, and DMS114 cell lines. M1774 also efficiently blocked the activation of the ATR-CHK1 checkpoint pathway caused by replication stress induced by TOP1 inhibitors. Combination with non-toxic dose of M1774 enhanced TOP1 inhibitor-induced cancer cell death by enabling unscheduled replication upon replicative damage, thereby increasing genome instability. Tandem mass tag-based quantitative proteomics uncovered that M1774, in the presence of DDA, forces the expression of proteins activating replication (CDC45) and G2-M progression (PLK1 and CCNB1). In particular, the fork protection complex proteins (TIMELESS and TIPIN) were enriched. Low dose of M1774 was found highly synergistic with a broad spectrum of clinical DDAs including TOP1 inhibitors (SN-38/irinotecan, topotecan, exatecan, and exatecan), the TOP2 inhibitor etoposide, cisplatin, the RNA polymerase II inhibitor lurbinectedin, and the PARP inhibitor talazoparib in various models including cancer cell lines, patient-derived organoids, and mouse xenograft models. Furthermore, we demonstrate that M1774 reverses chemoresistance to anticancer DDAs in cancer cells lacking SLFN11 expression, suggesting that SLFN11 can be utilized for patient selection in upcoming clinical trials.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Sinergismo Farmacológico , Humanos , Animales , Ratones , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Línea Celular Tumoral , Antineoplásicos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Daño del ADN/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Nucleares
7.
Mol Cancer Ther ; 23(2): 159-173, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37940144

RESUMEN

N-terminal processing by methionine aminopeptidases (MetAP) is a crucial step in the maturation of proteins during protein biosynthesis. Small-molecule inhibitors of MetAP2 have antiangiogenic and antitumoral activity. Herein, we characterize the structurally novel MetAP2 inhibitor M8891. M8891 is a potent, selective, reversible small-molecule inhibitor blocking the growth of human endothelial cells and differentially inhibiting cancer cell growth. A CRISPR genome-wide screen identified the tumor suppressor p53 and MetAP1/MetAP2 as determinants of resistance and sensitivity to pharmacologic MetAP2 inhibition. A newly identified substrate of MetAP2, translation elongation factor 1-alpha-1 (EF1a-1), served as a pharmacodynamic biomarker to follow target inhibition in cell and mouse studies. Robust angiogenesis and tumor growth inhibition was observed with M8891 monotherapy. In combination with VEGF receptor inhibitors, tumor stasis and regression occurred in patient-derived xenograft renal cell carcinoma models, particularly those that were p53 wild-type, had Von Hippel-Landau gene (VHL) loss-of-function mutations, and a mid/high MetAP1/2 expression score.


Asunto(s)
Aminopeptidasas , Carcinoma de Células Renales , Neoplasias Renales , Humanos , Animales , Ratones , Proteína p53 Supresora de Tumor/genética , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Células Endoteliales/metabolismo , Metaloendopeptidasas/metabolismo , Inhibidores Enzimáticos , Inhibidores de la Angiogénesis/farmacología , Neoplasias Renales/tratamiento farmacológico
8.
Aging (Albany NY) ; 15(2): 492-512, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36656721

RESUMEN

Over half of all cancer patients undergo radiation therapy but there is an unmet need for more efficacious combination strategies with molecular targeted drugs. DNA damage response has emerged as an important intervention point for improving anti-tumor effects of radiation and several inhibitors are currently in development. Ataxia telangiectasia mutated (ATM) kinase is a key regulator of cellular response to DNA double strand breaks and a potential target for radiosensitization. We recently reported two new potent and selective ATM inhibitors, M3541 and M4076, that effectively sensitize cancer cells to radiation and regress human xenografts in clinically relevant animal models. Here, we dive deeper into the cellular events in irradiated cancer cells exposed to ATM inhibitors. Suppression of ATM activity inhibited radiation-induced ATM signaling and abrogated G1 checkpoint activation resulting in enhanced cell death. Our data indicated that entry into mitosis with gross structural abnormalities in multiple chromosomes is the main mechanism behind the increased cell killing. Misalignment and mis-segregation led to formation of multiple micronuclei and robust activation of the interferon response and inflammatory signaling via the cGAS/STING/TBK1 pathway. Cancer cells exposed to radiation in the presence of M3541 were more susceptible to killing in co-culture with NK cells from healthy donors. In addition, strong upregulation of PD-L1 expression was observed in the surviving irradiated cancer cells exposed to M3541. Simultaneous activation of the STING pathway and PD-L1 suggested that combination of radiation, ATM inhibitors and PD-L1 targeted therapy may offer a novel approach to radio-immunotherapy of locally advanced tumors.


Asunto(s)
Ataxia Telangiectasia , Neoplasias , Animales , Humanos , Antígeno B7-H1/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Fosforilación , Muerte Celular , Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia
9.
Mol Cancer Ther ; 22(7): 859-872, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37079339

RESUMEN

Ataxia telangiectasia and Rad3-related protein (ATR) kinase regulate a key cell regulatory node for maintaining genomic integrity by preventing replication fork collapse. ATR inhibition has been shown to increase replication stress resulting in DNA double-strand breaks (DSBs) and cancer cell death, and several inhibitors are under clinical investigation for cancer therapy. However, activation of cell-cycle checkpoints controlled by ataxia telangiectasia-mutated (ATM) kinase could minimize the lethal consequences of ATR inhibition and protect cancer cells. Here, we investigate ATR-ATM functional relationship and potential therapeutic implications. In cancer cells with functional ATM and p53 signaling, selective suppression of ATR catalytic activity by M6620 induced G1-phase arrest to prevent S-phase entry with unrepaired DSBs. The selective ATM inhibitors, M3541 and M4076, suppressed both ATM-dependent cell-cycle checkpoints, and DSB repair lowered the p53 protective barrier and extended the life of ATR inhibitor-induced DSBs. Combination treatment amplified the fraction of cells with structural chromosomal defects and enhanced cancer cell death. ATM inhibitor synergistically potentiated the ATR inhibitor efficacy in cancer cells in vitro and increased ATR inhibitor efficacy in vivo at doses that did not show overt toxicities. Furthermore, a combination study in 26 patient-derived xenograft models of triple-negative breast cancer with the newer generation ATR inhibitor M4344 and ATM inhibitor M4076 demonstrated substantial improvement in efficacy and survival compared with single-agent M4344, suggesting a novel and potentially broad combination approach to cancer therapy.


Asunto(s)
Ataxia Telangiectasia , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Proteínas de la Ataxia Telangiectasia Mutada , Reparación del ADN , Proteínas de Ciclo Celular/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Daño del ADN , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética
10.
Nat Commun ; 14(1): 8310, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097586

RESUMEN

One fundamental principle that underlies various cancer treatments, such as traditional chemotherapy and radiotherapy, involves the induction of catastrophic DNA damage, leading to the apoptosis of cancer cells. In our study, we conduct a comprehensive dose-response combination screening focused on inhibitors that target key kinases involved in the DNA damage response (DDR): ATR, ATM, and DNA-PK. This screening involves 87 anti-cancer agents, including six DDR inhibitors, and encompasses 62 different cell lines spanning 12 types of tumors, resulting in a total of 17,912 combination treatment experiments. Within these combinations, we analyze the most effective and synergistic drug pairs across all tested cell lines, considering the variations among cancers originating from different tissues. Our analysis reveals inhibitors of five DDR-related pathways (DNA topoisomerase, PLK1 kinase, p53-inducible ribonucleotide reductase, PARP, and cell cycle checkpoint proteins) that exhibit strong combinatorial efficacy and synergy when used alongside ATM/ATR/DNA-PK inhibitors.


Asunto(s)
Proteínas de Ciclo Celular , Neoplasias , Humanos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Reparación del ADN , ADN
11.
EMBO Mol Med ; 15(8): e17313, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37491889

RESUMEN

Small-cell lung cancer (SCLC) is the most lethal type of lung cancer. Specifically, MYC-driven non-neuroendocrine SCLC is particularly resistant to standard therapies. Lurbinectedin was recently approved for the treatment of relapsed SCLC, but combinatorial approaches are needed to increase the depth and duration of responses to lurbinectedin. Using high-throughput screens, we found inhibitors of ataxia telangiectasia mutated and rad3 related (ATR) as the most effective agents for augmenting lurbinectedin efficacy. First-in-class ATR inhibitor berzosertib synergized with lurbinectedin in multiple SCLC cell lines, organoid, and in vivo models. Mechanistically, ATR inhibition abrogated S-phase arrest induced by lurbinectedin and forced cell cycle progression causing mitotic catastrophe and cell death. High CDKN1A/p21 expression was associated with decreased synergy due to G1 arrest, while increased levels of ERCC5/XPG were predictive of increased combination efficacy. Importantly, MYC-driven non-neuroendocrine tumors which are resistant to first-line therapies show reduced CDKN1A/p21 expression and increased ERCC5/XPG indicating they are primed for response to lurbinectedin-berzosertib combination. The combination is being assessed in a clinical trial NCT04802174.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Recurrencia Local de Neoplasia , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
12.
Clin Cancer Res ; 29(24): 5128-5139, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37773632

RESUMEN

PURPOSE: Leiomyosarcoma (LMS) is an aggressive sarcoma for which standard chemotherapies achieve response rates under 30%. There are no effective targeted therapies against LMS. Most LMS are characterized by chromosomal instability (CIN), resulting in part from TP53 and RB1 co-inactivation and DNA damage repair defects. We sought to identify therapeutic targets that could exacerbate intrinsic CIN and DNA damage in LMS, inducing lethal genotoxicity. EXPERIMENTAL DESIGN: We performed clinical targeted sequencing in 287 LMS and genome-wide loss-of-function screens in 3 patient-derived LMS cell lines, to identify LMS-specific dependencies. We validated candidate targets by biochemical and cell-response assays in vitro and in seven mouse models. RESULTS: Clinical targeted sequencing revealed a high burden of somatic copy-number alterations (median fraction of the genome altered =0.62) and demonstrated homologous recombination deficiency signatures in 35% of LMS. Genome-wide short hairpin RNA screens demonstrated PRKDC (DNA-PKcs) and RPA2 essentiality, consistent with compensatory nonhomologous end joining (NHEJ) hyper-dependence. DNA-PK inhibitor combinations with unconventionally low-dose doxorubicin had synergistic activity in LMS in vitro models. Combination therapy with peposertib and low-dose doxorubicin (standard or liposomal formulations) inhibited growth of 5 of 7 LMS mouse models without toxicity. CONCLUSIONS: Combinations of DNA-PK inhibitors with unconventionally low, sensitizing, doxorubicin dosing showed synergistic effects in LMS in vitro and in vivo models, without discernable toxicity. These findings underscore the relevance of DNA damage repair alterations in LMS pathogenesis and identify dependence on NHEJ as a clinically actionable vulnerability in LMS.


Asunto(s)
Leiomiosarcoma , Animales , Ratones , Humanos , Leiomiosarcoma/tratamiento farmacológico , Leiomiosarcoma/genética , Leiomiosarcoma/patología , Reparación del ADN/genética , Daño del ADN , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , ADN
13.
Cells ; 11(15)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35954206

RESUMEN

Ataxia telangiectasia and Rad-3 related kinase (ATR) signals DNA lesions and replication stress (RS) to the S and G2/M checkpoints and DNA repair pathways making it a promising target to exploit the dysregulated DNA damage response in cancer. ATR inhibitors (ATRi) are under clinical investigation as monotherapy and in combination with other anticancer agents. Molecular determinants of sensitivity to ATRi are common in ovarian cancer, suggesting the therapeutic potential of ATRi. We investigated the cytotoxicity of the ATRi, VE-821, in a panel of human ovarian cancer cell lines. High grade serous (HGS) cell lines were significantly more sensitive to VE-821 than non-HGS (p ≤ 0.0001) but previously identified determinants of sensitivity (TP53, ATM and BRCA1) were not predictive. Only low RAD51 (p = 0.041), TopBP1 (p = 0.026) and APOBEC3B (p = 0.015) protein expression were associated with increased VE-821 sensitivity. HGS cells had increased levels of RS (pRPASer4/8 and γH2AX nuclear immunofluorescence), and elevated RS predicted sensitivity to VE-821 independently of the cell line subtype. These data suggest that functional assessment of RS biomarkers may be a better predictive biomarker of ATRi response than any single aberrant gene in ovarian cancer and potentially other cancers.


Asunto(s)
Neoplasias Ováricas , Inhibidores de Proteínas Quinasas , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Biomarcadores , Carcinoma Epitelial de Ovario , Línea Celular Tumoral , Citidina Desaminasa/metabolismo , Femenino , Humanos , Antígenos de Histocompatibilidad Menor , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Inhibidores de Proteínas Quinasas/farmacología
14.
Mol Cancer Ther ; 21(6): 859-870, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35405736

RESUMEN

Radiotherapy and chemical DNA-damaging agents are among the most widely used classes of cancer therapeutics today. Double-strand breaks (DSB) induced by many of these treatments are lethal to cancer cells if left unrepaired. Ataxia telangiectasia-mutated (ATM) kinase plays a key role in the DNA damage response by driving DSB repair and cell-cycle checkpoints to protect cancer cells. Inhibitors of ATM catalytic activity have been shown to suppress DSB DNA repair, block checkpoint controls and enhance the therapeutic effect of radiotherapy and other DSB-inducing modalities. Here, we describe the pharmacological activities of two highly potent and selective ATM inhibitors from a new chemical class, M3541 and M4076. In biochemical assays, they inhibited ATM kinase activity with a sub-nanomolar potency and showed remarkable selectivity against other protein kinases. In cancer cells, the ATM inhibitors suppressed DSB repair, clonogenic cancer cell growth, and potentiated antitumor activity of ionizing radiation in cancer cell lines. Oral administration of M3541 and M4076 to immunodeficient mice bearing human tumor xenografts with a clinically relevant radiotherapy regimen strongly enhanced the antitumor activity, leading to complete tumor regressions. The efficacy correlated with the inhibition of ATM activity and modulation of its downstream targets in the xenograft tissues. In vitro and in vivo experiments demonstrated strong combination potential with PARP and topoisomerase I inhibitors. M4076 is currently under clinical investigation.


Asunto(s)
Ataxia Telangiectasia , Neoplasias , Animales , Ataxia Telangiectasia/genética , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN , Roturas del ADN de Doble Cadena , Reparación del ADN , Humanos , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Inhibidores de Proteínas Quinasas/farmacología
15.
Mol Cancer Res ; 20(4): 568-582, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34980594

RESUMEN

Radiotherapy is the most widely used cancer treatment and improvements in its efficacy and safety are highly sought-after. Peposertib (also known as M3814), a potent and selective DNA-dependent protein kinase (DNA-PK) inhibitor, effectively suppresses the repair of radiation-induced DNA double-strand breaks (DSB) and regresses human xenograft tumors in preclinical models. Irradiated cancer cells devoid of p53 activity are especially sensitive to the DNA-PK inhibitor, as they lose a key cell-cycle checkpoint circuit and enter mitosis with unrepaired DSBs, leading to catastrophic consequences. Here, we show that inhibiting the repair of DSBs induced by ionizing radiation with peposertib offers a powerful new way for improving radiotherapy by simultaneously enhancing cancer cell killing and response to a bifunctional TGFß "trap"/anti-PD-L1 cancer immunotherapy. By promoting chromosome misalignment and missegregation in p53-deficient cancer cells with unrepaired DSBs, DNA-PK inhibitor accelerated micronuclei formation, a key generator of cytosolic DNA and activator of cGAS/STING-dependent inflammatory signaling as it elevated PD-L1 expression in irradiated cancer cells. Triple combination of radiation, peposertib, and bintrafusp alfa, a fusion protein simultaneously inhibiting the profibrotic TGFß and immunosuppressive PD-L1 pathways was superior to dual combinations and suggested a novel approach to more efficacious radioimmunotherapy of cancer. IMPLICATIONS: Selective inhibition of DNA-PK in irradiated cancer cells enhances inflammatory signaling and activity of dual TGFß/PD-L1 targeted therapy and may offer a more efficacious combination option for the treatment of locally advanced solid tumors.


Asunto(s)
Neoplasias , Inhibidores de Proteínas Quinasas , Antígeno B7-H1/metabolismo , ADN , Humanos , Inmunoterapia , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia , Inhibidores de Proteínas Quinasas/farmacología , Piridazinas , Quinazolinas , Factor de Crecimiento Transformador beta
16.
JCI Insight ; 7(24)2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36413415

RESUMEN

Metastatic clear cell renal cell carcinomas (ccRCCs) are resistant to DNA-damaging chemotherapies, limiting therapeutic options for patients whose tumors are resistant to tyrosine kinase inhibitors and/or immune checkpoint therapies. Here we show that mouse and human ccRCCs were frequently characterized by high levels of endogenous DNA damage and that cultured ccRCC cells exhibited intact cellular responses to chemotherapy-induced DNA damage. We identify that pharmacological inhibition of the DNA damage-sensing kinase ataxia telangiectasia and Rad3-related protein (ATR) with the orally administered, potent, and selective drug M4344 (gartisertib) induced antiproliferative effects in ccRCC cells. This effect was due to replication stress and accumulation of DNA damage in S phase. In some cells, DNA damage persisted into subsequent G2/M and G1 phases, leading to the frequent accumulation of micronuclei. Daily single-agent treatment with M4344 inhibited the growth of ccRCC xenograft tumors. M4344 synergized with chemotherapeutic drugs including cisplatin and carboplatin and the poly(ADP-ribose) polymerase inhibitor olaparib in mouse and human ccRCC cells. Weekly M4344 plus cisplatin treatment showed therapeutic synergy in ccRCC xenografts and was efficacious in an autochthonous mouse ccRCC model. These studies identify ATR inhibition as a potential novel therapeutic option for ccRCC.


Asunto(s)
Antineoplásicos , Carcinoma de Células Renales , Humanos , Animales , Ratones , Carcinoma de Células Renales/tratamiento farmacológico , Cisplatino , Proteínas de la Ataxia Telangiectasia Mutada , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico
17.
Cancer Res ; 82(21): 3962-3973, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36273494

RESUMEN

Gastric cancer represents the third leading cause of global cancer mortality and an area of unmet clinical need. Drugs that target the DNA damage response, including ATR inhibitors (ATRi), have been proposed as novel targeted agents in gastric cancer. Here, we sought to evaluate the efficacy of ATRi in preclinical models of gastric cancer and to understand how ATRi resistance might emerge as a means to identify predictors of ATRi response. A positive selection genome-wide CRISPR-Cas9 screen identified candidate regulators of ATRi resistance in gastric cancer. Loss-of-function mutations in either SMG8 or SMG9 caused ATRi resistance by an SMG1-mediated mechanism. Although ATRi still impaired ATR/CHK1 signaling in SMG8/9-defective cells, other characteristic responses to ATRi exposure were not seen, such as changes in ATM/CHK2, γH2AX, phospho-RPA, or 53BP1 status or changes in the proportions of cells in S- or G2-M-phases of the cell cycle. Transcription/replication conflicts (TRC) elicited by ATRi exposure are a likely cause of ATRi sensitivity, and SMG8/9-defective cells exhibited a reduced level of ATRi-induced TRCs, which could contribute to ATRi resistance. These observations suggest ATRi elicits antitumor efficacy in gastric cancer but that drug resistance could emerge via alterations in the SMG8/9/1 pathway. SIGNIFICANCE: These findings reveal how cancer cells acquire resistance to ATRi and identify pathways that could be targeted to enhance the overall effectiveness of these inhibitors.


Asunto(s)
Antineoplásicos , Neoplasias Gástricas , Humanos , Antineoplásicos/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Inhibidores de Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Péptidos y Proteínas de Señalización Intracelular/metabolismo
18.
Nat Cell Biol ; 4(4): 294-301, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11912491

RESUMEN

Regulation of the actin cytoskeleton by microtubules is mediated by the Rho family GTPases. However, the molecular mechanisms that link microtubule dynamics to Rho GTPases have not, as yet, been identified. Here we show that the Rho guanine nucleotide exchange factor (GEF)-H1 is regulated by an interaction with microtubules. GEF-H1 mutants that are deficient in microtubule binding have higher activity levels than microtubule-bound forms. These mutants also induce Rho-dependent changes in cell morphology and actin organization. Furthermore, drug-induced microtubule depolymerization induces changes in cell morphology and gene expression that are similar to the changes induced by the expression of active forms of GEF-H1. Furthermore, these effects are inhibited by dominant-negative versions of GEF-H1. Thus, GEF-H1 links changes in microtubule integrity to Rho-dependent regulation of the actin cytoskeleton.


Asunto(s)
Actinas/metabolismo , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Microtúbulos/metabolismo , Factores de Intercambio de Guanina Nucleótido ras/química , Factores de Intercambio de Guanina Nucleótido ras/metabolismo , Animales , Células COS , ADN Complementario/metabolismo , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica , Genes Reporteros , Nucleótidos de Guanina , Células HeLa , Humanos , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Genéticos , Plásmidos/metabolismo , Pruebas de Precipitina , Estructura Terciaria de Proteína , Factores de Intercambio de Guanina Nucleótido Rho , Factores de Tiempo , Transfección , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
19.
Sci Rep ; 11(1): 12148, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108527

RESUMEN

Peposertib (M3814) is a potent and selective DNA-PK inhibitor in early clinical development. It effectively blocks non-homologous end-joining repair of DNA double-strand breaks (DSB) and strongly potentiates the antitumor effect of ionizing radiation (IR) and topoisomerase II inhibitors. By suppressing DNA-PK catalytic activity in the presence of DNA DSB, M3814 potentiates ATM/p53 signaling leading to enhanced p53-dependent antitumor activity in tumor cells. Here, we investigated the therapeutic potential of M3814 in combination with DSB-inducing agents in leukemia cells and a patient-derived tumor. We show that in the presence of IR or topoisomerase II inhibitors, M3814 boosts the ATM/p53 response in acute leukemia cells leading to the elevation of p53 protein levels as well as its transcriptional activity. M3814 synergistically sensitized p53 wild-type, but not p53-deficient, AML cells to killing by DSB-inducing agents via p53-dependent apoptosis involving both intrinsic and extrinsic effector pathways. The antileukemic effect was further potentiated by enhancing daunorubicin-induced myeloid cell differentiation. Further, combined with the fixed-ratio liposomal formulation of daunorubicin and cytarabine, CPX-351, M3814 enhanced the efficacy against leukemia cells in vitro and in vivo without increasing hematopoietic toxicity, suggesting that DNA-PK inhibition could offer a novel clinical strategy for harnessing the anticancer potential of p53 in AML therapy.


Asunto(s)
Roturas del ADN de Doble Cadena , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda/patología , Piridazinas/farmacología , Quinazolinas/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis , Proliferación Celular , Reparación del ADN , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Mol Cancer Ther ; 20(8): 1431-1441, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34045232

RESUMEN

Although several ATR inhibitors are in development, there are unresolved questions regarding their differential potency, molecular signatures of patients with cancer for predicting activity, and most effective therapeutic combinations. Here, we elucidate how to improve ATR-based chemotherapy with the newly developed ATR inhibitor, M4344 using in vitro and in vivo models. The potency of M4344 was compared with the clinically developed ATR inhibitors BAY1895344, berzosertib, and ceralasertib. The anticancer activity of M4344 was investigated as monotherapy and combination with clinical DNA damaging agents in multiple cancer cell lines, patient-derived tumor organoids, and mouse xenograft models. We also elucidated the anticancer mechanisms and potential biomarkers for M4344. We demonstrate that M4344 is highly potent among the clinically developed ATR inhibitors. Replication stress (RepStress) and neuroendocrine (NE) gene expression signatures are significantly associated with a response to M4344 treatment. M4344 kills cancer cells by inducing cellular catastrophe and DNA damage. M4344 is highly synergistic with a broad range of DNA-targeting anticancer agents. It significantly synergizes with topotecan and irinotecan in patient-derived tumor organoids and xenograft models. Taken together, M4344 is a promising and highly potent ATR inhibitor. It enhances the activity of clinical DNA damaging agents commonly used in cancer treatment including topoisomerase inhibitors, gemcitabine, cisplatin, and talazoparib. RepStress and NE gene expression signatures can be exploited as predictive markers for M4344.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Replicación del ADN , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Animales , Apoptosis , Proliferación Celular , Desoxicitidina/administración & dosificación , Desoxicitidina/análogos & derivados , Femenino , Humanos , Irinotecán/administración & dosificación , Isoxazoles/administración & dosificación , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Morfolinas/administración & dosificación , Pirazinas/administración & dosificación , Pirazoles/administración & dosificación , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Carcinoma Pulmonar de Células Pequeñas/patología , Topotecan/administración & dosificación , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Gemcitabina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA