Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Neurophysiol ; 151: 18-27, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37141780

RESUMEN

OBJECTIVE: To explore the effects of short-term immobilisation and subsequent retraining on peripheral nervous system (PNS) measures using two novel electrophysiological methods, muscle velocity recovery cycles (MVRC) and MScanFit motor unit number estimation (MUNE) alongside lower limb muscle strength, muscle imaging and walking capacity. METHODS: Twelve healthy participants underwent 1-week of ankle immobilisation and 2-weeks of retraining. Assessments before and after immobilisation, and after retraining, included MVRC [muscle membrane properties; muscle relative refractory period (MRRP), early and late supernormality], MScanFit, MRI-scans [muscle contractile cross-sectional area (cCSA)], isokinetic dynamometry [dorsal and plantar flexor muscle strength], and 2-minute maximal walk test [physical function]. RESULTS: After immobilisation, compound muscle action potential (CMAP) amplitude reduced (-1.35[-2.00;-0.69]mV); mean change [95%CI]) alongside reductions in plantar (but not dorsal) flexor muscle cCSA (-124[-246;3]mm2), dorsal flexor muscle strength (isometric -0.06[-0.10;-0.02]Nm/kg, dynamicslow -0.08[-0.11;-0.04]Nm/kg, dynamicfast no changes), plantar flexor muscle strength (isometric -0.20[-0.30;-0.10]Nm/kg, dynamicslow -0.19[-0.28;-0.09]Nm/kg, dynamicfast -0.12[-0.19;-0.05]Nm/kg) and walking capacity (-31[-39;-23]m). After retraining, all immobilisation-affected parameters returned to baseline levels. In contrast, neither MScanFit nor MVRC were affected apart from slightly prolonged MRRP in gastrocnemius. CONCLUSIONS: PNS do not contribute to the changes observed in muscle strength and walking capacity. SIGNIFICANCE: Further studies should include both corticospinal and peripheral mechanisms.


Asunto(s)
Extremidad Inferior , Músculo Esquelético , Humanos , Contracción Muscular , Fuerza Muscular/fisiología , Caminata/fisiología
2.
J Vis Exp ; (156)2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-32150167

RESUMEN

Although conventional nerve conduction studies (NCS) and electromyography (EMG) are suitable for the diagnosis of neuromuscular disorders, they provide limited information about muscle fiber membrane properties and underlying disease mechanisms. Muscle velocity recovery cycles (MVRCs) illustrate how the velocity of a muscle action potential depends on the time after a preceding action potential. MVRCs are closely related to changes in membrane potential that follow an action potential, thereby providing information about muscle fiber membrane properties. MVRCs may be recorded quickly and easily by direct stimulation and recording from multi-fiber bundles in vivo. MVRCs have been helpful in understanding disease mechanisms in several neuromuscular disorders. Studies in patients with channelopathies have demonstrated the different effects of specific ion channel mutations on muscle excitability. MVRCs have been previously tested in patients with neurogenic muscles. In this prior study, muscle relative refraction period (MRRP) was prolonged, and early supernormality (ESN) and late supernormality (LSN) were reduced in patients compared to healthy controls. Thereby, MVRCs can provide in vivo evidence of membrane depolarization in intact human muscle fibers that underlie their reduced excitability. The protocol presented here describes how to record MVRCs and analyze the recordings. MVRCs can serve as a fast, simple, and useful method for revealing disease mechanisms across a broad range of neuromuscular disorders.


Asunto(s)
Potenciales de Acción , Electromiografía/instrumentación , Potenciales de la Membrana , Contracción Muscular , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/fisiología , Recuperación de la Función , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA