Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 590(7846): 486-491, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33505028

RESUMEN

Selective targeting of aneuploid cells is an attractive strategy for cancer treatment1. However, it is unclear whether aneuploidy generates any clinically relevant vulnerabilities in cancer cells. Here we mapped the aneuploidy landscapes of about 1,000 human cancer cell lines, and analysed genetic and chemical perturbation screens2-9 to identify cellular vulnerabilities associated with aneuploidy. We found that aneuploid cancer cells show increased sensitivity to genetic perturbation of core components of the spindle assembly checkpoint (SAC), which ensures the proper segregation of chromosomes during mitosis10. Unexpectedly, we also found that aneuploid cancer cells were less sensitive than diploid cells to short-term exposure to multiple SAC inhibitors. Indeed, aneuploid cancer cells became increasingly sensitive to inhibition of SAC over time. Aneuploid cells exhibited aberrant spindle geometry and dynamics, and kept dividing when the SAC was inhibited, resulting in the accumulation of mitotic defects, and in unstable and less-fit karyotypes. Therefore, although aneuploid cancer cells could overcome inhibition of SAC more readily than diploid cells, their long-term proliferation was jeopardized. We identified a specific mitotic kinesin, KIF18A, whose activity was perturbed in aneuploid cancer cells. Aneuploid cancer cells were particularly vulnerable to depletion of KIF18A, and KIF18A overexpression restored their response to SAC inhibition. Our results identify a therapeutically relevant, synthetic lethal interaction between aneuploidy and the SAC.


Asunto(s)
Aneuploidia , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Neoplasias/patología , Cariotipo Anormal/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Segregación Cromosómica/efectos de los fármacos , Diploidia , Genes Letales , Humanos , Cinesinas/deficiencia , Cinesinas/genética , Cinesinas/metabolismo , Neoplasias/genética , Huso Acromático/efectos de los fármacos , Mutaciones Letales Sintéticas/efectos de los fármacos , Mutaciones Letales Sintéticas/genética , Factores de Tiempo
2.
Biochem Biophys Res Commun ; 582: 100-104, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34700241

RESUMEN

Aniridia is a panocular inherited rare eye disease linked to heterozygous mutations on the PAX6 gene, which fail to properly produce sufficient protein essential for normal eye development and function. Most of the patients suffer from aniridia-related keratopathy, a progressive opacification of the cornea. There is no effective treatment for this blinding disease. Here we screen for small compounds and identified Ritanserin, a serotonin 2A receptor antagonist, that can rescue PAX6 haploinsufficiency of mutant limbal cells, defective cell migration and PAX6-target gene expression. We further demonstrated that Ritanserin activates PAX6 production through the selective inactivation of the MEK/ERK signaling pathway. Our data strongly suggest that repurposing this therapeutic molecule could be effective in preventing or treating existing blindness by restoring corneal transparency.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Soluciones Oftálmicas/farmacología , Factor de Transcripción PAX6/genética , Ritanserina/farmacología , Antagonistas de la Serotonina/farmacología , Células Madre/efectos de los fármacos , Aniridia/tratamiento farmacológico , Aniridia/genética , Aniridia/metabolismo , Aniridia/patología , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Reposicionamiento de Medicamentos/métodos , Epitelio Corneal/efectos de los fármacos , Epitelio Corneal/metabolismo , Epitelio Corneal/patología , Regulación de la Expresión Génica , Células HEK293 , Haploinsuficiencia , Humanos , Limbo de la Córnea/efectos de los fármacos , Limbo de la Córnea/metabolismo , Limbo de la Córnea/patología , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Modelos Biológicos , Factor de Transcripción PAX6/agonistas , Factor de Transcripción PAX6/metabolismo , Receptor de Serotonina 5-HT2A/genética , Receptor de Serotonina 5-HT2A/metabolismo , Transducción de Señal/efectos de los fármacos , Células Madre/metabolismo , Células Madre/patología
3.
bioRxiv ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38313282

RESUMEN

The co-occurrence of chromosome 10 loss and chromosome 7 gain in gliomas is the most frequent loss-gain co-aneuploidy pair in human cancers, a phenomenon that has been investigated without resolution since the late 1980s. Expanding beyond previous gene-centric studies, we investigate the co-occurrence in a genome-wide manner taking an evolutionary perspective. First, by mining large tumor aneuploidy data, we predict that the more likely order is 10 loss followed by 7 gain. Second, by analyzing extensive genomic and transcriptomic data from both patients and cell lines, we find that this co-occurrence can be explained by functional rescue interactions that are highly enriched on 7, which can possibly compensate for any detrimental consequences arising from the loss of 10. Finally, by analyzing transcriptomic data from normal, non-cancerous, human brain tissues, we provide a plausible reason why this co-occurrence happens preferentially in cancers originating in certain regions of the brain.

4.
Dev Cell ; 56(17): 2440-2454.e6, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34352223

RESUMEN

Mitotic errors lead to aneuploidy, a condition of karyotype imbalance, frequently found in cancer cells. Alterations in chromosome copy number induce a wide variety of cellular stresses, including genome instability. Here, we show that cancer cells might exploit aneuploidy-induced genome instability and the resulting gene copy-number changes to survive under conditions of selective pressure, such as chemotherapy. Resistance to chemotherapeutic drugs was dictated by the acquisition of recurrent karyotypes, indicating that gene dosage might play a role in driving chemoresistance. Thus, our study establishes a causal link between aneuploidy-driven changes in gene copy number and chemoresistance and might explain why some chemotherapies fail to succeed.


Asunto(s)
Aneuploidia , Inestabilidad Cromosómica/genética , Resistencia a Medicamentos/genética , Quimioterapia , Dosificación de Gen/genética , Quimioterapia/métodos , Inestabilidad Genómica/genética , Humanos , Cariotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA