Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
PLoS Pathog ; 16(12): e1009166, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33370402

RESUMEN

Herpes simplex virus 1 (HSV-1) infects skin and mucosal epithelial cells and then travels along axons to establish latency in the neurones of sensory ganglia. Although viral gene expression is restricted during latency, the latency-associated transcript (LAT) locus encodes many RNAs, including a 2 kb intron known as the hallmark of HSV-1 latency. Here, we studied HSV-1 infection and the role of the LAT locus in human skin xenografts in vivo and in cultured explants. We sequenced the genomes of our stock of HSV-1 strain 17syn+ and seven derived viruses and found nonsynonymous mutations in many viral proteins that had no impact on skin infection. In contrast, deletions in the LAT locus severely impaired HSV-1 replication and lesion formation in skin. However, skin replication was not affected by impaired intron splicing. Moreover, although the LAT locus has been implicated in regulating gene expression in neurones, we observed only small changes in transcript levels that were unrelated to the growth defect in skin, suggesting that its functions in skin may be different from those in neurones. Thus, although the LAT locus was previously thought to be dispensable for lytic infection, we show that it is a determinant of HSV-1 virulence during lytic infection of human skin.


Asunto(s)
Herpes Simple/virología , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/patogenicidad , MicroARNs/genética , Piel/virología , Virulencia/genética , Animales , Xenoinjertos , Humanos , Ratones , Factores de Virulencia/genética
2.
J Virol ; 92(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29563288

RESUMEN

Varicella-zoster virus (VZV) is the skin-tropic human alphaherpesvirus responsible for both varicella-zoster and herpes zoster. Varicella-zoster and herpes zoster skin lesions have similar morphologies, but herpes zoster occurs disproportionally in older individuals and is often associated with a more extensive local rash and severe zoster-related neuralgia. We hypothesized that skin aging could also influence the outcome of the anterograde axonal transport of VZV to skin. We utilized human skin xenografts maintained in immunodeficient (SCID) mice to study VZV-induced skin pathology in vivo in fetal and adult skin xenografts. Here we found that VZV replication is enhanced in skin from older compared to younger adults, correlating with clinical observations. In addition to measures of VZV infection, we examined the expression of type I interferon (IFN) pathway components in adult skin and investigated elements of the cutaneous proliferative and inflammatory response to VZV infection in vivo Our results demonstrated that VZV infection of adult skin triggers intrinsic IFN-mediated responses such as we have described in VZV-infected fetal skin xenografts, including MxA as well as promyelocytic leukemia protein (PML), in skin cells surrounding lesions. Further, we observed that VZV elicited altered cell signaling and proliferative and inflammatory responses that are involved in wound healing, driven by follicular stem cells. These cellular changes are consistent with VZV-induced activation of STAT3 and suggest that VZV exploits the wound healing process to ensure efficient delivery of the virus to keratinocytes. Adult skin xenografts offer an approach to further investigate VZV-induced skin pathologies in vivoIMPORTANCE Varicella-zoster virus (VZV) is the agent responsible for both varicella-zoster and herpes zoster. Herpes zoster occurs disproportionally in older individuals and is often associated with a more extensive local rash and severe zoster-related neuralgia. To examine the effect of skin aging on VZV skin lesions, we utilized fetal and adult human skin xenografts maintained in immunodeficient (SCID) mice. We measured VZV-induced skin pathology, examined the expression of type I interferon (IFN) pathway components in adult skin, and investigated elements of the cutaneous proliferative and inflammatory response to VZV infection in vivo Our results demonstrate that characteristics of aging skin are preserved in xenografts; that VZV replication is enhanced in skin from older compared to younger adults, correlating with clinical observations; and that VZV infection elicits altered cell signaling and inflammatory responses. Adult skin xenografts offer an approach to further investigate VZV-induced skin pathologies in vivo.


Asunto(s)
Envejecimiento/patología , Herpesvirus Humano 3/crecimiento & desarrollo , Factor de Transcripción STAT3/metabolismo , Infección por el Virus de la Varicela-Zóster/patología , Replicación Viral/fisiología , Adulto , Factores de Edad , Anciano , Animales , Modelos Animales de Enfermedad , Activación Enzimática , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Proteína de la Leucemia Promielocítica/metabolismo , Piel/virología , Enfermedades de la Piel/patología , Enfermedades de la Piel/virología , Trasplante de Piel , Trasplante Heterólogo , Infección por el Virus de la Varicela-Zóster/virología , Cicatrización de Heridas/fisiología
3.
Proc Natl Acad Sci U S A ; 112(1): 256-61, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25535384

RESUMEN

Autophagy is a process by which misfolded and damaged proteins are sequestered into autophagosomes, before degradation in and recycling from lysosomes. We have extensively studied the role of autophagy in varicella-zoster virus (VZV) infection, and have observed that vesicular cells are filled with >100 autophagosomes that are easily detectable after immunolabeling for the LC3 protein. To confirm our hypothesis that increased autophagosome formation was not secondary to a block, we examined all conditions of VZV infection as well as carrying out two assessments of autophagic flux. We first investigated autophagy in human skin xenografts in the severe combined immunodeficiency (SCID) mouse model of VZV pathogenesis, and observed that autophagosomes were abundant in infected human skin tissues. We next investigated autophagy following infection with sonically prepared cell-free virus in cultured cells. Under these conditions, autophagy was detected in a majority of infected cells, but was much less than that seen after an infected-cell inoculum. In other words, inoculation with lower-titered cell-free virus did not reflect the level of stress to the VZV-infected cell that was seen after inoculation of human skin in the SCID mouse model or monolayers with higher-titered infected cells. Finally, we investigated VZV-induced autophagic flux by two different methods (radiolabeling proteins and a dual-colored LC3 plasmid); both showed no evidence of a block in autophagy. Overall, therefore, autophagy within a VZV-infected cell was remarkably different from autophagy within an HSV-infected cell, whose genome contains two modifiers of autophagy, ICP34.5 and US11, not present in VZV.


Asunto(s)
Autofagia , Herpes Simple/patología , Herpes Simple/virología , Herpes Zóster/patología , Herpes Zóster/virología , Herpesvirus Humano 3/fisiología , Simplexvirus/fisiología , Animales , Línea Celular , Sistema Libre de Células , Modelos Animales de Enfermedad , Fibroblastos/patología , Fibroblastos/virología , Proteínas Fluorescentes Verdes/metabolismo , Xenoinjertos , Humanos , Ratones SCID , Proteínas Asociadas a Microtúbulos/metabolismo , Fagosomas/metabolismo , Plásmidos/metabolismo , Piel/patología , Piel/virología
4.
PLoS Pathog ; 11(6): e1004989, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26090802

RESUMEN

Varicella zoster virus (VZV), a human alphaherpesvirus, causes varicella during primary infection. VZV reactivation from neuronal latency may cause herpes zoster, post herpetic neuralgia (PHN) and other neurologic syndromes. To investigate VZV neuropathogenesis, we developed a model using human dorsal root ganglia (DRG) xenografts in immunodeficient (SCID) mice. The SCID DRG model provides an opportunity to examine characteristics of VZV infection that occur in the context of the specialized architecture of DRG, in which nerve cell bodies are ensheathed by satellite glial cells (SGC) which support neuronal homeostasis. We hypothesized that VZV exhibits neuron-subtype specific tropism and that VZV tropism for SGC contributes to VZV-related ganglionopathy. Based on quantitative analyses of viral and cell protein expression in DRG tissue sections, we demonstrated that, whereas DRG neurons had an immature neuronal phenotype prior to implantation, subtype heterogeneity was observed within 20 weeks and SGC retained the capacity to maintain neuronal homeostasis longterm. Profiling VZV protein expression in DRG neurons showed that VZV enters peripherin+ nociceptive and RT97+ mechanoreceptive neurons by both axonal transport and contiguous spread from SGC, but replication in RT97+ neurons is blocked. Restriction occurs even when the SGC surrounding the neuronal cell body were infected and after entry and ORF61 expression, but before IE62 or IE63 protein expression. Notably, although contiguous VZV spread with loss of SGC support would be predicted to affect survival of both nociceptive and mechanoreceptive neurons, RT97+ neurons showed selective loss relative to peripherin+ neurons at later times in DRG infection. Profiling cell factors that were upregulated in VZV-infected DRG indicated that VZV infection induced marked pro-inflammatory responses, as well as proteins of the interferon pathway and neuroprotective responses. These neuropathologic changes observed in sensory ganglia infected with VZV may help to explain the neurologic sequelae often associated with zoster and PHN.


Asunto(s)
Varicela/virología , Ganglios Espinales/virología , Herpes Zóster/virología , Herpesvirus Humano 3/patogenicidad , Neuronas/virología , Animales , Varicela/patología , Herpes Zóster/patología , Xenoinjertos , Humanos , Ratones , Ratones SCID , Células Satélites Perineuronales/virología , Virulencia/fisiología
5.
Proc Natl Acad Sci U S A ; 109(2): 600-5, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22190485

RESUMEN

Varicella-zoster virus (VZV) is a human α-herpesvirus that causes varicella (chickenpox) during primary infection and zoster (shingles) upon reactivation. Like other viruses, VZV must subvert the intrinsic antiviral defenses of differentiated human cells to produce progeny virions. Accordingly, VZV inhibits the activation of the cellular transcription factors IFN regulatory factor 3 (IRF3) and signal transducers and activators of transcription 1 (STAT1), thereby downregulating antiviral factors, including IFNs. Conversely, in this study, we found that VZV triggers STAT3 phosphorylation in cells infected in vitro and in human skin xenografts in SCID mice in vivo and that STAT3 activation induces the anti-apoptotic protein survivin. Small-molecule inhibitors of STAT3 phosphorylation and survivin restrict VZV replication in vitro, and VZV infection of skin xenografts in vivo is markedly impaired by the administration of the phospho-STAT3 inhibitor S3I-201. STAT3 and survivin are required for malignant transformation caused by γ-herpesviruses, such as Kaposi's sarcoma virus. We show that STAT3 activation is also critical for VZV, a nononcogenic herpesvirus, via a survivin-dependent mechanism. Furthermore, STAT3 activation is critical for the life cycle of the virus because VZV skin infection is necessary for viral transmission and persistence in the human population. Therefore, we conclude that takeover of this major cell-signaling pathway is necessary, independent of cell transformation, for herpesvirus pathogenesis and that STAT3 activation and up-regulation of survivin is a common mechanism important for the pathogenesis of lytic as well as tumorigenic herpesviruses.


Asunto(s)
Herpesvirus Humano 3/fisiología , Proteínas Inhibidoras de la Apoptosis/genética , Factor de Transcripción STAT3/genética , Activación Transcripcional/fisiología , Replicación Viral/fisiología , Ácidos Aminosalicílicos/farmacología , Animales , Bencenosulfonatos/farmacología , Citometría de Flujo , Humanos , Mediciones Luminiscentes , Ratones , Ratones SCID , Fosforilación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/metabolismo , Piel/metabolismo , Piel/virología , Survivin , Activación Transcripcional/genética , Replicación Viral/genética
6.
J Virol ; 87(5): 2791-802, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23269807

RESUMEN

The tropism of herpes simplex virus (HSV-1) for human sensory neurons infected in vivo was examined using dorsal root ganglion (DRG) xenografts maintained in mice with severe combined immunodeficiency (SCID). In contrast to the HSV-1 lytic infectious cycle in vitro, replication of the HSV-1 F strain was restricted in human DRG neurons despite the absence of adaptive immune responses in SCID mice, allowing the establishment of neuronal latency. At 12 days after DRG inoculation, 26.2% of human neurons expressed HSV-1 protein and 13.1% expressed latency-associated transcripts (LAT). Some infected neurons showed cytopathic changes, but HSV-1, unlike varicella-zoster virus (VZV), only rarely infected satellite cells and did not induce fusion of neuronal and satellite cell plasma membranes. Cell-free enveloped HSV-1 virions were observed, indicating productive infection. A recombinant HSV-1-expressing luciferase exhibited less virulence than HSV-1 F in the SCID mouse host, enabling analysis of infection in human DRG xenografts for a 61-day interval. At 12 days after inoculation, 4.2% of neurons expressed HSV-1 proteins; frequencies increased to 32.1% at 33 days but declined to 20.8% by 61 days. Frequencies of LAT-positive neurons were 1.2% at 12 days and increased to 40.2% at 33 days. LAT expression remained at 37% at 61 days, in contrast to the decline in neurons expressing viral proteins. These observations show that the progression of HSV-1 infection is highly restricted in human DRG, and HSV-1 genome silencing occurs in human neurons infected in vivo as a consequence of virus-host cell interactions and does not require adaptive immune control.


Asunto(s)
Ganglios Espinales/virología , Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Inmunodeficiencia Combinada Grave/virología , Tropismo Viral , Aciclovir/administración & dosificación , Aciclovir/análogos & derivados , Aciclovir/farmacología , Animales , Ganglios Espinales/patología , Expresión Génica , Herpes Simple/tratamiento farmacológico , Herpes Simple/metabolismo , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 3 , Humanos , Luciferasas/biosíntesis , Ratones , Ratones SCID , Células Satélites Perineuronales/virología , Trasplante Heterólogo , Valaciclovir , Valina/administración & dosificación , Valina/análogos & derivados , Valina/farmacología , Proteínas Virales/metabolismo , Latencia del Virus , Replicación Viral
7.
J Virol ; 87(7): 4075-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23345513

RESUMEN

The varicella-zoster virus (VZV) ORF61 protein is necessary for normal replication in vitro and virulence in human skin xenografts in the severe combined immunodeficiency mouse model in vivo. These experiments identify a hydrophobic domain that mediates ORF61 self-interaction. While not needed to inhibit host cell defenses, disruption of this domain (residues 250 to 320) severely impairs VZV growth, transactivation of the immediate early 63 and glycoprotein E genes, and the pathogenesis of VZV skin infection in vivo.


Asunto(s)
Varicela/fisiopatología , Herpesvirus Humano 3/metabolismo , Piel/virología , Proteínas Virales/química , Proteínas Virales/metabolismo , Replicación Viral/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/patogenicidad , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Inmediatas-Precoces/metabolismo , Immunoblotting , Inmunoprecipitación , Ratones , Microscopía Confocal , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Análisis de Secuencia de ADN , Piel/patología , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales/genética , Replicación Viral/genética
8.
J Virol ; 86(1): 578-83, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22013055

RESUMEN

Analyses of varicella-zoster virus (VZV) protein expression during latency have been discordant, with rare to many positive neurons detected. We show that ascites-derived murine and rabbit antibodies specific for VZV proteins in vitro contain endogenous antibodies that react with human blood type A antigens in neurons. Apparent VZV neuronal staining and blood type A were strongly associated (by a χ² test, α = 0.0003). Adsorption of ascites-derived monoclonal antibodies or antiserum with type A erythrocytes or the use of in vitro-derived VZV monoclonal antibodies eliminated apparent VZV staining. Animal-derived antibodies must be screened for anti-blood type A reactivity to avoid misidentification of viral proteins in the neurons of the 30 to 40% of individuals who are blood type A.


Asunto(s)
Sistema del Grupo Sanguíneo ABO/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos/inmunología , Herpes Zóster/virología , Herpesvirus Humano 3/genética , Células Receptoras Sensoriales/virología , Proteínas Virales/genética , Latencia del Virus , Animales , Anticuerpos/análisis , Anticuerpos Antivirales/análisis , Reacciones Cruzadas , Regulación Viral de la Expresión Génica , Herpes Zóster/inmunología , Herpesvirus Humano 3/química , Herpesvirus Humano 3/inmunología , Herpesvirus Humano 3/fisiología , Humanos , Inmunohistoquímica , Ratones , Conejos , Células Receptoras Sensoriales/química , Células Receptoras Sensoriales/inmunología , Proteínas Virales/análisis , Proteínas Virales/inmunología
9.
PLoS Pathog ; 7(2): e1001266, 2011 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-21304940

RESUMEN

The herpesviruses, like most other DNA viruses, replicate in the host cell nucleus. Subnuclear domains known as promyelocytic leukemia protein nuclear bodies (PML-NBs), or ND10 bodies, have been implicated in restricting early herpesviral gene expression. These viruses have evolved countermeasures to disperse PML-NBs, as shown in cells infected in vitro, but information about the fate of PML-NBs and their functions in herpesvirus infected cells in vivo is limited. Varicella-zoster virus (VZV) is an alphaherpesvirus with tropism for skin, lymphocytes and sensory ganglia, where it establishes latency. Here, we identify large PML-NBs that sequester newly assembled nucleocapsids (NC) in neurons and satellite cells of human dorsal root ganglia (DRG) and skin cells infected with VZV in vivo. Quantitative immuno-electron microscopy revealed that these distinctive nuclear bodies consisted of PML fibers forming spherical cages that enclosed mature and immature VZV NCs. Of six PML isoforms, only PML IV promoted the sequestration of NCs. PML IV significantly inhibited viral infection and interacted with the ORF23 capsid surface protein, which was identified as a target for PML-mediated NC sequestration. The unique PML IV C-terminal domain was required for both capsid entrapment and antiviral activity. Similar large PML-NBs, termed clastosomes, sequester aberrant polyglutamine (polyQ) proteins, such as Huntingtin (Htt), in several neurodegenerative disorders. We found that PML IV cages co-sequester HttQ72 and ORF23 protein in VZV infected cells. Our data show that PML cages contribute to the intrinsic antiviral defense by sensing and entrapping VZV nucleocapsids, thereby preventing their nuclear egress and inhibiting formation of infectious virus particles. The efficient sequestration of virion capsids in PML cages appears to be the outcome of a basic cytoprotective function of this distinctive category of PML-NBs in sensing and safely containing nuclear aggregates of aberrant proteins.


Asunto(s)
Cápside/metabolismo , Herpesvirus Humano 3/metabolismo , Interacciones Huésped-Patógeno/fisiología , Cuerpos de Inclusión Viral/metabolismo , Cuerpos de Inclusión Intranucleares/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Núcleo Celular/metabolismo , Núcleo Celular/virología , Células Cultivadas , Citoprotección/fisiología , Embrión de Mamíferos , Herpesvirus Humano 3/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Cuerpos de Inclusión Viral/virología , Cuerpos de Inclusión Intranucleares/virología , Ratones , Ratones SCID , Proteínas Nucleares/fisiología , Proteína de la Leucemia Promielocítica , Unión Proteica , Multimerización de Proteína/fisiología , Factores de Transcripción/fisiología , Trasplante Heterólogo , Proteínas Supresoras de Tumor/fisiología
10.
Proc Natl Acad Sci U S A ; 107(1): 282-7, 2010 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-19966293

RESUMEN

Varicella-zoster virus (VZV) is an alphaherpesvirus that infects skin, lymphocytes, and sensory ganglia. VZV glycoprotein E (gE) has a unique N-terminal region (aa1-188), which is required for replication and includes domains involved in secondary envelopment, efficient cell-cell spread, and skin infection in vivo. The nonconserved N-terminal region also mediates binding to the insulin-degrading enzyme (IDE), which is proposed to be a VZV receptor. Using viral mutagenesis to make the recombinant rOka-DeltaP27-G90, we showed that amino acids in this region are required for gE/IDE binding in infected cells; this deletion reduced cell-cell spread in vitro and skin infection in vivo. However, a gE point mutation, linker insertions, and partial deletions in the aa27-90 region, and deletion of a large portion of the unique N-terminal region, aa52-187, had similar or more severe effects on VZV replication in vitro and in vivo without disrupting the gE/IDE interaction. VZV replication in T cells in vivo was not impaired by deletion of gE aa27-90, suggesting that these gE residues are not essential for VZV T cell tropism. However, the rOka-DeltaY51-P187 mutant failed to replicate in T cell xenografts as well as skin in vivo. VZV tropism for T cells and skin, which is necessary for its life cycle in the human host, requires this nonconserved region of the N-terminal region of VZV gE.


Asunto(s)
Varicela/fisiopatología , Herpesvirus Humano 3/patogenicidad , Proteínas del Envoltorio Viral/metabolismo , Animales , Línea Celular Tumoral , Varicela/metabolismo , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/fisiología , Humanos , Ratones , Ratones SCID , Mutagénesis , Estructura Terciaria de Proteína , Piel/citología , Piel/patología , Piel/virología , Enfermedades de la Piel/patología , Enfermedades de la Piel/virología , Trasplante de Piel , Linfocitos T/inmunología , Linfocitos T/virología , Trasplante Heterólogo , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Replicación Viral/genética
11.
J Virol ; 85(1): 98-111, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20962081

RESUMEN

Varicella-zoster virus (VZV) is a neurotropic alphaherpesvirus. VZV infection of human dorsal root ganglion (DRG) xenografts in immunodeficient mice models the infection of sensory ganglia. We examined DRG infection with recombinant VZV (recombinant Oka [rOka]) and the following gE mutants: gEΔ27-90, gEΔCys, gE-AYRV, and gE-SSTT. gEΔ27-90, which lacks the gE domain that interacts with a putative receptor insulin-degrading enzyme (IDE), replicated as extensively as rOka, producing infectious virions and significant cytopathic effects within 14 days of inoculation. Since neural cells express IDE, the gE/IDE interaction was dispensable for VZV neurotropism. In contrast, gEΔCys, which lacks gE/gI heterodimer formation, was significantly impaired at early times postinfection; viral genome copy numbers increased slowly, and infectious virus production was not detected until day 28. Delayed replication was associated with impaired cell-cell spread in ganglia, similar to the phenotype of a gI deletion mutant (rOkaΔgI). However, at later time points, infection of satellite cells and other supportive nonneuronal cells resulted in extensive DRG tissue damage and cell loss such that cytopathic changes observed at day 70 were more severe than those for rOka-infected DRG. The replication of gE-AYRV, which is impaired for trans-Golgi network (TGN) localization, and the replication of gE-SSTT, which contains mutations in an acidic cluster, were equivalent to that of rOka, causing significant cytopathic effects and infectious virus production by day 14; genome copy numbers were equivalent to those of rOka. These experiments suggest that the gE interaction with cellular IDE, gE targeting to TGN sites of virion envelopment, and phosphorylation at SSTT are dispensable for VZV DRG infection, whereas the gE/gI interaction is critical for VZV neurovirulence.


Asunto(s)
Ganglios Sensoriales/patología , Herpes Zóster/patología , Herpesvirus Humano 3/patogenicidad , Proteínas del Envoltorio Viral/metabolismo , Animales , Línea Celular , Ganglios Sensoriales/metabolismo , Ganglios Sensoriales/virología , Herpes Zóster/virología , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/metabolismo , Humanos , Masculino , Ratones , Ratones SCID , Piel/metabolismo , Piel/patología , Piel/virología , Proteínas del Envoltorio Viral/genética , Virulencia , Internalización del Virus , Replicación Viral
12.
J Virol ; 84(7): 3421-30, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20106930

RESUMEN

Varicella-zoster virus (VZV) causes varicella and establishes latency in sensory nerve ganglia, but the characteristics of VZV latency are not well defined. Immunohistochemical detection of the VZV immediate-early 63 (IE63) protein in ganglion neurons has been described, but there are significant discrepancies in estimates of the frequency of IE63-positive neurons, varying from a rare event to abundant expression. We examined IE63 expression in cadaver ganglia using a high-potency rabbit anti-IE63 antibody and corresponding preimmune serum. Using standard immunohistochemical techniques, we evaluated 10 ganglia that contained VZV DNA from seven individuals. These experiments showed that neuronal pigments were a confounding variable; however, by examining sections coded to prevent investigator bias and applying statistical analysis, we determined that IE63 protein, if present, is in a very small proportion of neurons (<2.8%). To refine estimates of IE63 protein abundance, we modified our protocol by incorporating a biological stain to exclude the pigment signal and evaluated 27 ganglia from 18 individuals. We identified IE63 protein in neurons within only one ganglion, in which VZV glycoprotein E and an immune cell infiltrate were also demonstrated. Antigen preservation was shown by detection of neuronal synaptophysin. These data provide evidence that the expression of IE63 protein, which has been referred to as a latency-associated protein, is rare. Refining estimates of VZV protein expression in neurons is important for developing a hypothesis about the mechanisms by which VZV latency may be maintained.


Asunto(s)
Ganglios Sensoriales/virología , Proteínas Inmediatas-Precoces/análisis , Neuronas/virología , Proteínas del Envoltorio Viral/análisis , Latencia del Virus , Adulto , Anciano , Anciano de 80 o más Años , ADN Viral/análisis , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunohistoquímica , Melaninas/análisis , Persona de Mediana Edad , Sinaptofisina/análisis
13.
J Virol ; 84(1): 141-52, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19828615

RESUMEN

Varicella-zoster virus (VZV) infection is usually mild in healthy individuals but can cause severe disease in immunocompromised patients. Prophylaxis with varicella-zoster immunoglobulin can reduce the severity of VZV if given shortly after exposure. Glycoprotein H (gH) is a highly conserved herpesvirus protein with functions in virus entry and cell-cell spread and is a target of neutralizing antibodies. The anti-gH monoclonal antibody (MAb) 206 neutralizes VZV in vitro. To determine the requirement for gH in VZV pathogenesis in vivo, MAb 206 was administered to SCID mice with human skin xenografts inoculated with VZV. Anti-gH antibody given at 6 h postinfection significantly reduced the frequency of skin xenograft infection by 42%. Virus titers, genome copies, and lesion size were decreased in xenografts that became infected. In contrast, administering anti-gH antibody at 4 days postinfection suppressed VZV replication but did not reduce the frequency of infection. The neutralizing anti-gH MAb 206 blocked virus entry, cell fusion, or both in skin in vivo. In vitro, MAb 206 bound to plasma membranes and to surface virus particles. Antibody was internalized into vacuoles within infected cells, associated with intracellular virus particles, and colocalized with markers for early endosomes and multivesicular bodies but not the trans-Golgi network. MAb 206 blocked spread, altered intracellular trafficking of gH, and bound to surface VZV particles, which might facilitate their uptake and targeting for degradation. As a consequence, antibody interference with gH function would likely prevent or significantly reduce VZV replication in skin during primary or recurrent infection.


Asunto(s)
Anticuerpos Monoclonales/farmacocinética , Anticuerpos Antivirales/uso terapéutico , Herpesvirus Humano 3/patogenicidad , Glicoproteínas de Membrana/inmunología , Piel/virología , Proteínas Virales/inmunología , Animales , Anticuerpos Monoclonales/uso terapéutico , Transporte Biológico , Herpesvirus Humano 3/efectos de los fármacos , Herpesvirus Humano 3/inmunología , Humanos , Inmunoglobulinas/uso terapéutico , Ratones , Ratones SCID , Piel/inmunología , Trasplante de Piel , Trasplante Heterólogo
14.
J Neurovirol ; 17(6): 570-7, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22161683

RESUMEN

Varicella-zoster virus (VZV) is a medically important human alphaherpesvirus. Investigating pathogenic mechanisms that contribute to VZV neurovirulence are made difficult by a marked host restriction. Our approach to investigating VZV neurotropism and neurovirulence has been to develop a mouse-human xenograft model in which human dorsal root ganglia (DRG) are maintained in severe compromised immunodeficient (SCID) mice. In this review, we will describe our key findings using this model in which we have demonstrated that VZV infection of SCID DRG xenograft results in rapid and efficient spread, enabled by satellite cell infection and polykaryon formation, which facilitates robust viral replication and release of infectious virus. In neurons that persist following this acute replicative phase, VZV genomes are present at low frequency with limited gene transcription and no protein synthesis, a state that resembles VZV latency in the natural human host. VZV glycoprotein I and interaction between glycoprotein I and glycoprotein E are critical for neurovirulence. Our work demonstrates that the DRG model can reveal characteristics about VZV replication and long-term persistence of latent VZV genomes in human neuronal tissues, in vivo, in an experimental system that may contribute to our knowledge of VZV neuropathogenesis.


Asunto(s)
Varicela/virología , Regulación Viral de la Expresión Génica , Herpes Zóster/virología , Herpesvirus Humano 3/genética , Células Receptoras Sensoriales/virología , Proteínas del Envoltorio Viral/genética , Replicación Viral/genética , Animales , Ganglios Espinales/metabolismo , Ganglios Espinales/trasplante , Ganglios Espinales/virología , Herpesvirus Humano 3/patogenicidad , Humanos , Ratones , Ratones SCID , Células Satélites Perineuronales/virología , Células Receptoras Sensoriales/metabolismo , Piel/virología , Transcripción Genética , Trasplante Heterólogo , Proteínas del Envoltorio Viral/metabolismo , Virulencia/genética , Latencia del Virus/genética
15.
Curr Top Microbiol Immunol ; 342: 189-209, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20397071

RESUMEN

Varicella-zoster virus (VZV) is a medically important human alphaherpesvirus that causes varicella and zoster. VZV initiates primary infection by inoculation of the respiratory mucosa. In the course of primary infection, VZV establishes a life-long persistence in sensory ganglia; VZV reactivation from latency may result in zoster in healthy and immunocompromised patients. The VZV genome has at least 70 known or predicted open reading frames (ORFs), but understanding how these gene products function in virulence is difficult because VZV is a highly human-specific pathogen. We have addressed this obstacle by investigating VZV infection of human tissue xenografts in the severe combined immunodeficiency mouse model. In studies relevant to the pathogenesis of primary VZV infection, we have examined VZV infection of human T cell (thymus/liver) and skin xenografts. This work supports a new paradigm for VZV pathogenesis in which VZV T cell tropism provides a mechanism for delivering the virus to skin. We have also shown that VZV-infected T cells transfer VZV to neurons in sensory ganglia. The construction of infectious VZV recombinants that have deletions or targeted mutations of viral genes or their promoters and the evaluation of VZV mutants in T cell and skin xenografts has revealed determinants of VZV virulence that are important for T cell and skin tropism in vivo.


Asunto(s)
Varicela/inmunología , Varicela/virología , Herpes Zóster/virología , Herpesvirus Humano 3/inmunología , Tejido Linfoide/inmunología , Enfermedades Cutáneas Infecciosas/virología , Linfocitos T/inmunología , Animales , Herpes Zóster/inmunología , Humanos , Tejido Linfoide/virología , Ratones , Ratones SCID , Piel/inmunología , Piel/virología , Enfermedades Cutáneas Infecciosas/inmunología , Linfocitos T/virología
16.
Curr Top Microbiol Immunol ; 342: 129-46, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20186616

RESUMEN

The two VZV glycoproteins, gE and gI, are encoded by genes that are designated open reading frames, ORF67 and ORF68, located in the short unique region of the VZV genome. These proteins have homologs in the other alphaherpesviruses. Like their homologues, VZV gE and gI exhibit prominent co-localization in infected cells and form heterodimers. However, VZV gE is much larger than its homologues because it has a unique N-terminal domain, consisting of 188 amino acids that are not present in these other gene products. VZV gE also differs from the related gE proteins, in that it is essential for viral replication. Targeted mutations of gE that are compatible with VZV replication in cultured cells have varying phenotypes in skin and T-cell xenografts in the SCID mouse model of VZV pathogenesis in vivo. While gI is dispensable for growth in cultured cells in vitro, this glycoprotein is essential for VZV infection of differentiated human skin and T cells in vivo. The promoter regions of gE and gI are regulated by the cellular transactivator, specificity protein factor 1 (Sp1) in combination with the major VZV transactivator in reporter construct experiments and some Sp1 promoter elements are important for VZV virulence in vivo. Further analysis of VZV gE and gI functions and their interactions with other viral and host cell proteins are important areas for studies of VZV replication and pathogenesis.


Asunto(s)
Herpesvirus Humano 3/fisiología , Regiones Promotoras Genéticas/fisiología , Proteínas del Envoltorio Viral/fisiología , Replicación Viral/fisiología , Animales , Modelos Animales de Enfermedad , Herpesvirus Humano 3/genética , Ratones , Ratones SCID , Mutación , Factor de Transcripción Sp1/fisiología , Transcripción Genética , Proteínas del Envoltorio Viral/genética
17.
J Exp Med ; 200(7): 917-25, 2004 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-15452178

RESUMEN

Primary infection with varicella-zoster virus (VZV) causes the characteristic syndrome of varicella, or chickenpox. Experiments in severe combined immunodeficiency mice with human skin grafts (SCIDhu mice) indicate that VZV infection of T cells can mediate transfer of infectious virus to skin. VZV-infected T cells reached epithelial sites of replication within 24 h after entering the circulation. Memory CD4+ T cells were the predominant population recovered from skin in SCIDhu mice given uninfected or infected mononuclear cells, suggesting that immune surveillance by memory T cells may facilitate VZV transfer. The increased susceptibility of memory T cells to VZV infection may further enhance their role in VZV pathogenesis. During VZV skin infection, viral gene products down-regulated interferon-alpha to permit focal replication, whereas adjacent epidermal cells mounted a potent interferon-alpha response against cell-cell spread. Interleukin-1alpha, although activated in VZV-infected cells, did not trigger expression of endothelial adhesion molecules, thereby avoiding early recruitment of inflammatory cells. The prolonged varicella incubation period appears to represent the time required for VZV to overcome antiviral responses of epidermal cells and generate vesicles at the skin surface. Modulation of VZV replication by cutaneous innate immunity may avoid an incapacitating infection of the host that would limit opportunities for VZV transmission.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Herpes Zóster/fisiopatología , Herpesvirus Humano 3/fisiología , Interferón-alfa/inmunología , Piel/virología , Replicación Viral/fisiología , Animales , Linfocitos T CD4-Positivos/inmunología , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Células Endoteliales/virología , Humanos , Inmunohistoquímica , Memoria Inmunológica , Interferón-alfa/metabolismo , Interleucina-1/metabolismo , Ratones , Ratones SCID , Tonsila Palatina/inmunología , Piel/inmunología , Trasplante Heterólogo
18.
J Virol ; 83(1): 228-40, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18945783

RESUMEN

Varicella-zoster virus (VZV) glycoprotein E (gE) is the most abundant glycoprotein in infected cells and, in contrast to those of other alphaherpesviruses, is essential for viral replication. The gE ectodomain contains a unique N-terminal region required for viral replication, cell-cell spread, and secondary envelopment; this region also binds to the insulin-degrading enzyme (IDE), a proposed VZV receptor. To identify new functional domains of the gE ectodomain, the effect of mutagenesis of the first cysteine-rich region of the gE ectodomain (amino acids 208 to 236) was assessed using VZV cosmids. Deletion of this region was compatible with VZV replication in vitro, but cell-cell spread of the rOka-DeltaCys mutant was reduced significantly. Deletion of the cysteine-rich region abolished the binding of the mutant gE to gI but not to IDE. Preventing gE binding to gI altered the pattern of gE expression at the plasma membrane of infected cells and the posttranslational maturation of gI and its incorporation into viral particles. In contrast, deletion of the first cysteine-rich region did not affect viral entry into human tonsil T cells in vitro or into melanoma cells infected with cell-free VZV. These experiments demonstrate that gE/gI heterodimer formation is essential for efficient cell-cell spread and incorporation of gI into viral particles but that it is dispensable for infectious varicella-zoster virion formation and entry into target cells. Blocking gE binding to gI resulted in severe impairment of VZV infection of human skin xenografts in SCIDhu mice in vivo, documenting the importance of cell fusion mediated by this complex for VZV virulence in skin.


Asunto(s)
Herpesvirus Humano 3/fisiología , Herpesvirus Humano 3/patogenicidad , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Ensamble de Virus , Internalización del Virus , Animales , Línea Celular , Herpes Zóster , Humanos , Ratones , Ratones SCID , Unión Proteica , Eliminación de Secuencia , Trasplante Heterólogo , Virulencia
19.
J Virol ; 83(15): 7495-506, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19474103

RESUMEN

Glycoprotein B (gB), the most conserved protein in the family Herpesviridae, is essential for the fusion of viral and cellular membranes. Information about varicella-zoster virus (VZV) gB is limited, but homology modeling showed that the structure of VZV gB was similar to that of herpes simplex virus (HSV) gB, including the putative fusion loops. In contrast to HSV gB, VZV gB had a furin recognition motif ([R]-X-[KR]-R-|-X, where | indicates the position at which the polypeptide is cleaved) at residues 491 to 494, thought to be required for gB cleavage into two polypeptides. To investigate their contribution, the putative primary fusion loop or the furin recognition motif was mutated in expression constructs and in the context of the VZV genome. Substitutions in the primary loop, W180G and Y185G, plus the deletion mutation Delta491RSRR494 and point mutation 491GSGG494 in the furin recognition motif did not affect gB expression or cellular localization in transfected cells. Infectious VZV was recovered from parental Oka (pOka)-bacterial artificial chromosomes that had either the Delta491RSRR494 or 491GSGG494 mutation but not the point mutations W180G and Y185G, demonstrating that residues in the primary loop of gB were essential but gB cleavage was not required for VZV replication in vitro. Virion morphology, protein localization, plaque size, and replication were unaffected for the pOka-gBDelta491RSRR494 or pOka-gB491GSGG494 virus compared to pOka in vitro. However, deletion of the furin recognition motif caused attenuation of VZV replication in human skin xenografts in vivo. This is the first evidence that cleavage of a herpesvirus fusion protein contributes to viral pathogenesis in vivo, as seen for fusion proteins in other virus families.


Asunto(s)
Varicela/virología , Furina/metabolismo , Herpesvirus Humano 3/patogenicidad , Mutagénesis , Piel/virología , Proteínas del Envoltorio Viral/genética , Replicación Viral , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Varicela/metabolismo , Varicela/patología , Herpesvirus Humano 3/química , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/fisiología , Humanos , Técnicas In Vitro , Ratones , Ratones SCID , Datos de Secuencia Molecular , Mutación , Unión Proteica , Alineación de Secuencia , Piel/metabolismo , Piel/patología , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo
20.
J Virol ; 82(8): 3971-83, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18256143

RESUMEN

Varicella-zoster virus (VZV) is a human alphaherpesvirus that infects sensory ganglia and reactivates from latency to cause herpes zoster. VZV replication was examined in human dorsal root ganglion (DRG) xenografts in mice with severe combined immunodeficiency using multiscale correlative immunofluorescence and electron microscopy. These experiments showed the presence of VZV genomic DNA, viral proteins, and virion production in both neurons and satellite cells within DRG. Furthermore, the multiscale analysis of VZV-host cell interactions revealed virus-induced cell-cell fusion and polykaryon formation between neurons and satellite cells during VZV replication in DRG in vivo. Satellite cell infection and polykaryon formation in neuron-satellite cell complexes provide mechanisms to amplify VZV entry into neuronal cell bodies, which is necessary for VZV transfer to skin in the affected dermatome during herpes zoster. These mechanisms of VZV neuropathogenesis help to account for the often severe neurologic consequences of herpes zoster.


Asunto(s)
Ganglios Espinales/patología , Ganglios Espinales/virología , Herpes Zóster/patología , Herpes Zóster/virología , Herpesvirus Humano 3/fisiología , Animales , Fusión Celular , ADN Viral/biosíntesis , Ganglios Espinales/ultraestructura , Células Gigantes , Humanos , Masculino , Ratones , Ratones SCID , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Neuronas/virología , Células Satélites Perineuronales/virología , Trasplante Heterólogo/patología , Proteínas Virales/biosíntesis , Virión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA