Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Zygote ; 30(4): 543-549, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35362399

RESUMEN

Sperm motility and viability of cryopreserved semen vary between boars and straws, which influences the outcomes of in vitro embryo production (IVEP). However, progressive motility is usually not considered during IVEP. The aim of this study was to assess fertilization with a 500:1 and 250:1 'progressively motile sperm to oocyte' ratio on IVEP outcomes using semen from three Duroc and three Landrace boars. Frozen-thawed sperm was centrifuged through a 45/90% Percoll® density gradient and sperm quality parameters were assessed. In vitro matured oocytes were fertilized at the two ratios, a portion was stained 10-12 h after start of fertilization to analyze fertilization and polyspermy, while the remaining zygotes were cultured up to day 7. The 500:1 ratio resulted in a higher fertilization and blastocyst yield on day 6 compared with the 250:1 ratio, but no effect of ratio was observed for polyspermy, cleavage rate or blastocyst cell number. Individual differences between boars were observed for fertilization, cleavage and blastocyst rates, but not for the other IVEP outcomes. In conclusion, a higher fertilization and blastocyst yield was obtained with the 500:1 ratio compared with the 250:1 ratio, while polyspermy level was consistent across ratios. Differences in IVEP outcomes were still observed between the individual boars although adjusted for progressive motility. Promising blastocyst yields and high total blastocyst cell counts were obtained with sperm from both breeds.


Asunto(s)
Semen , Motilidad Espermática , Animales , Desarrollo Embrionario , Fertilización In Vitro/métodos , Masculino , Oocitos , Espermatozoides , Porcinos
2.
Mol Reprod Dev ; 88(3): 187-200, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33634579

RESUMEN

In this study, the complexity of chromatin integrity was investigated in frozen-thawed semen samples from 37 sires with contrasting fertility, expressed as 56-day non-return rates (NR56). Protamine deficiency, thiols, and disulfide bonds were assessed and compared with previously published data for DNA fragmentation index (DFI) and high DNA stainability (HDS). In addition, in vitro embryo development and sperm DNA methylation were assessed using semen samples from 16 of these bulls. The percentages of DFI and HDS were negatively associated with NR56 and cleavage rate and positively associated with sperm protamine deficiency (p < 0.05). Significant differences in cleavage and blastocyst rates were observed between bulls of high and low NR56. However, once fertilization occurred, further development into blastocysts was not associated with NR56. The differential methylation analysis showed that spermatozoa from bulls of low NR56 were hypermethylated compared to bulls of high NR56. Pathway analysis showed that genes annotated to differentially methylated cytosines could participate in different biological pathways and have important biological roles related to bull fertility. In conclusion, sperm cells from Norwegian Red bulls of inferior fertility have less compact chromatin structure, higher levels of DNA damage, and are hypermethylated compared with bulls of superior fertility.


Asunto(s)
Cromatina/metabolismo , Metilación de ADN , Fertilidad/fisiología , Espermatozoides/metabolismo , Animales , Bovinos , Fragmentación del ADN , Desarrollo Embrionario/fisiología , Masculino , Análisis de Semen , Preservación de Semen
3.
BMC Vet Res ; 16(1): 161, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32456687

RESUMEN

BACKGROUND: Sperm hyperactive motility has previously been shown to influence litter size in pigs, but little is known about the underlying biological mechanisms. The aim of this study was to use RNA sequencing to investigate gene expression differences in testis tissue from Landrace and Duroc boars with high and low levels of sperm hyperactive motility. Boars with divergent phenotypes were selected based on their sperm hyperactivity values at the day of ejaculation (day 0) (contrasts (i) and (ii) for Landrace and Duroc, respectively) and on their change in hyperactivity between day 0 and after 96 h liquid storage at 18 °C (contrast (iii)). RESULTS: RNA sequencing was used to measure gene expression in testis. In Landrace boars, 3219 genes were differentially expressed for contrast (i), whereas 102 genes were differentially expressed for contrast (iii). Forty-one differentially expressed genes were identified in both contrasts, suggesting a functional role of these genes in hyperactivity regardless of storage. Zinc finger DNLZ was the most up-regulated gene in contrasts (i) and (iii), whereas the most significant differentially expressed gene for the two contrasts were ADP ribosylation factor ARFGAP1 and solute carrier SLC40A1, respectively. For Duroc (contrast (ii)), the clustering of boars based on their gene expression data did not reflect their difference in sperm hyperactivity phenotypes. No results were therefore obtained for this breed. A case-control analysis of variants identified in the Landrace RNA sequencing data showed that SNPs in NEU3, CHRDL2 and HMCN1 might be important for sperm hyperactivity. CONCLUSIONS: Differentially expressed genes were identified in Landrace boars with high and low levels of sperm hyperactivity at the day of ejaculate collection and high and low change in hyperactivity after 96 h of sperm storage. The results point towards important candidate genes, biochemical pathways and sequence variants underlying sperm hyperactivity in pigs.


Asunto(s)
Motilidad Espermática/genética , Sus scrofa/genética , Testículo/metabolismo , Animales , Perfilación de la Expresión Génica/veterinaria , Masculino , Polimorfismo de Nucleótido Simple , Análisis de Semen/veterinaria , Análisis de Secuencia de ARN/veterinaria , Sus scrofa/clasificación
4.
BMC Vet Res ; 13(1): 362, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29183316

RESUMEN

BACKGROUND: Sperm DNA is protected against fragmentation by a high degree of chromatin packaging. It has been demonstrated that proper chromatin packaging is important for boar fertility outcome. However, little is known about the molecular mechanisms underlying differences in sperm DNA fragmentation. Knowledge of sequence variation influencing this sperm parameter could be beneficial in selecting the best artificial insemination (AI) boars for commercial production. The aim of this study was to identify genes differentially expressed in testis tissue of Norwegian Landrace and Duroc boars, with high and low sperm DNA fragmentation index (DFI), using transcriptome sequencing. RESULTS: Altogether, 308 and 374 genes were found to display significant differences in expression level between high and low DFI in Landrace and Duroc boars, respectively. Of these genes, 71 were differentially expressed in both breeds. Gene ontology analysis revealed that significant terms in common for the two breeds included extracellular matrix, extracellular region and calcium ion binding. Moreover, different metabolic processes were enriched in Landrace and Duroc, whereas immune response terms were common in Landrace only. Variant detection identified putative polymorphisms in some of the differentially expressed genes. Validation showed that predicted high impact variants in RAMP2, GIMAP6 and three uncharacterized genes are particularly interesting for sperm DNA fragmentation in boars. CONCLUSIONS: We identified differentially expressed genes between groups of boars with high and low sperm DFI, and functional annotation of these genes point towards important biochemical pathways. Moreover, variant detection identified putative polymorphisms in the differentially expressed genes. Our results provide valuable insights into the molecular network underlying DFI in pigs.


Asunto(s)
Fragmentación del ADN , Perfilación de la Expresión Génica , Espermatozoides/citología , Sus scrofa/genética , Animales , Cruzamiento , Masculino , Polimorfismo Genético , Análisis de Secuencia de ARN/veterinaria , Sus scrofa/metabolismo , Testículo/citología , Testículo/metabolismo , Transcriptoma
5.
Acta Vet Scand ; 64(1): 21, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064611

RESUMEN

Hyperactive sperm motility is important for successful fertilization. In the present study, a proteome profiling approach was performed to identify the differences between Landrace boars with different levels of hyperactive sperm motility in liquid extended semen. Two contrasts were studied: (i) high versus low levels of sperm hyperactivity at semen collection day and (ii) high versus low change in levels of sperm hyperactivity after 96 h semen storage. Testicular samples were analyzed on a Q Exactive mass spectrometer and more than 6000 proteins were identified in the 13 samples. The most significant differentially expressed proteins were mediator complex subunit 28 (MED28), cell division cycle 37 like 1 (CDC37L1), ubiquitin specific peptidase 10 (USP10), zinc finger FYVE-type containing 26 (ZFYVE26), protein kinase C delta (PRKCD), actinin alpha 4 (ACTN4), N(alpha)-acetyltransferase 30 (NAA30), C1q domain-containing (LOC110258309) and uncharacterized LOC100512926. Of the differentially expressed proteins, 11 have previously been identified as differentially expressed at the corresponding mRNA transcript level using the same samples and contrasts. These include sphingosine kinase 1 isoform 2 (SPHK1), serine and arginine rich splicing factor 1 (SRSF1), and tubulin gamma-1 (TUBG1) which are involved in the acrosome reaction and sperm motility. A mass spectrometry approach was applied to investigate the protein profiles of boars with different levels of hyperactive sperm motility. This study identified several proteins previously shown to be involved in sperm motility and quality, but also proteins with no known function for sperm motility. Candidates that are differentially expressed on both mRNA and protein levels are especially relevant as biological markers of semen quality.


Asunto(s)
Análisis de Semen , Motilidad Espermática , Animales , Masculino , ARN Mensajero , Semen/fisiología , Análisis de Semen/veterinaria , Espermatozoides/fisiología , Porcinos
6.
Front Genet ; 11: 922, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849856

RESUMEN

Genomic selection in modern farming demands sufficient semen production in young bulls. Factors affecting semen quality and production capacity in young bulls are not well understood; DNA methylation, a complicated phenomenon in sperm cells, is one such factors. In this study, fresh and frozen-thawed semen samples from the same Norwegian Red (NR) bulls at both 14 and 17 months of age were examined for sperm chromatin integrity parameters, ATP content, viability, and motility. Furthermore, reduced representation bisulfite libraries constructed according to two protocols, the Ovation® RRBS Methyl-Seq System (Ovation method) and a previously optimized gel-free method and were sequenced to study the sperm DNA methylome in frozen-thawed semen samples. Sperm quality analyses indicated that sperm concentration, total motility and progressivity in fresh semen from 17 months old NR bulls were significantly higher compared to individuals at 14 months of age. The percentage of DNA fragmented sperm cells significantly decreased in both fresh and frozen-thawed semen samples in bulls with increasing age. Libraries from the Ovation method exhibited a greater percentage of read loss and shorter read size following trimming. Downstream analyses for reads obtained from the gel-free method revealed similar global sperm DNA methylation but differentially methylated regions (DMRs) between 14- and 17 months old NR bulls. The majority of identified DMRs were hypomethylated in 14 months old bulls. Most of the identified DMRs (69%) exhibited a less than 10% methylation difference while only 1.5% of DMRs exceeded a 25% methylation difference. Pathway analysis showed that genes annotated with DMRs having low methylation differences (less than 10%) and DMRs having between 10 and 25% methylation differences, could be associated with important hormonal signaling and sperm function relevant pathways, respectively. The current research shows that RRBS in parallel with routine sperm quality analyses could be informative in reproductive capacity of young NR bulls. Although global sperm DNA methylation levels in 14 and 17 months old NR bulls were similar, regions with low and varying levels of DNA methylation differences can be identified and linked with important sperm function and hormonal pathways.

7.
Theriogenology ; 157: 24-32, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32777668

RESUMEN

In the dairy breeding industry, prediction of bull fertility in artificial insemination (AI) is important for efficient and economically sustainable production. However, it is challenging to identify bulls with superior fertility applying conventional in vitro sperm assays. In the present study, sperm functionality was investigated to identify a multivariate model that could predict fertility. Two groups of young Norwegian Red bulls were selected, one with inferior fertility (18 bulls) and one with superior fertility (19 bulls) based on non-return rate after 56 days (NR56). Frozen-thawed semen doses were analysed for sperm chromatin integrity, viability, acrosome integrity, motility, and ATP content. A targeted approach was used to study intracellular concentrations of amino acids and trace elements in viable sperm cells. Significant differences between the two groups of bulls were observed, both for sperm functional attributes and intracellular concentrations of metabolites. Pearson correlation analyses indicated a negative relationship between NR56 and chromatin integrity parameters, DNA fragmentation index (DFI) and high DNA stainability (HDS). Several motility parameters correlated positively with NR56. The concentrations of cysteine and glutamic acid in sperm cells correlated negatively with NR56, while the concentrations of aspartic acid, leucine and serine showed a positive NR56-correlation. The sperm intracellular concentrations of the trace elements Fe, Al and Zn, correlated negatively with NR56. Correlations were observed between several sperm parameters and metabolites. Stepwise multiple regression analysis indicated that the best predictor of NR56 was a model containing %DFI, together with the intracellular sperm concentration of aspartic acid, Fe and Zn. This model explained 59% of the variability in NR56.


Asunto(s)
Preservación de Semen , Motilidad Espermática , Animales , Bovinos , Fertilidad , Inseminación Artificial/veterinaria , Masculino , Semen , Preservación de Semen/veterinaria , Espermatozoides
8.
Anim Reprod Sci ; 193: 226-234, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29703418

RESUMEN

Boar fertility has a major impact on overall pig reproductive efficiency. Using accurate and objective in vitro sperm variables for predicting in vivo fertility from a single ejaculate, however, is challenging. Motility is the most widely used indicator of sperm quality, and a computer assisted sperm analysis (CASA) system is now available for objective assessment of sperm motility characteristics. In this study sperm motility characteristics and semen ATP concentrations were investigated and the effect of both were evaluated on total number of piglets born (TNB) when Norwegian Landrace (NL) and Norwegian Duroc (ND) boar semen was used for AI. In addition, breed differences for semen storage capacity were investigated. The results from CASA analysis indicated there were differences between NL and ND sperm motility variables. The percentage of motile sperm cells decreased in both NL (P = 0.01) and ND (P < 0.0001) during storage. A large proportion of sperm cells with a hyperactive motility pattern were detected in ND semen on the day of collection, with no significant changes as a result of storage. Inconsistent with this finding, there was greater degree of hyper-activation in sperm motility pattern for NL because of semen storage. There was a significant decrease in semen ATP concentration during storage (P < 0.0001) in both breeds. The linearity of sperm movement at the day of collection and the wobble after storage influenced TNB in NL, while the percentage of motile cells, curvilinear velocity and lateral head amplitude on the day of semen collection and linearity after storage influenced TNB in ND.


Asunto(s)
Adenosina Trifosfato/metabolismo , Fertilidad/fisiología , Reproducción/fisiología , Motilidad Espermática/fisiología , Porcinos/fisiología , Animales , Cruzamiento , Masculino , Análisis de Semen , Especificidad de la Especie , Porcinos/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA