Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 242(3): 1098-1112, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38515249

RESUMEN

The potential for totipotency exists in all plant cells; however, the underlying mechanisms remain largely unknown. Earlier findings have revealed that the overexpression of LEAFY COTYLEDON 2 (LEC2) can directly trigger the formation of somatic embryos on the cotyledons of Arabidopsis. Furthermore, cotyledon cells that overexpress LEC2 accumulate significant lipid reserves typically found in seeds. The precise mechanisms and functions governing lipid accumulation in this process remain unexplored. In this study, we demonstrate that WRINKLED1 (WRI1), the key regulator of lipid biosynthesis, is essential for somatic embryo formation, suggesting that WRI1-mediated lipid biosynthesis plays a crucial role in the transition from vegetative to embryonic development. Our findings indicate a direct interaction between WRI1 and LEC2, which enhances the enrichment of LEC2 at downstream target genes and stimulates their induction. Besides, our data suggest that WRI1 forms a complex with LEC1, LEC2, and FUSCA3 (FUS3) to facilitate the accumulation of auxin and lipid for the somatic embryo induction, through strengthening the activation of YUCCA4 (YUC4) and OLEOSIN3 (OLE3) genes. Our results uncover a regulatory module controlled by WRI1, crucial for somatic embryogenesis. These findings provide valuable insights into our understanding of plant cell totipotency.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Lípidos , Semillas/genética , Factores de Transcripción/metabolismo
2.
Plant Cell Rep ; 39(4): 543-552, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32025802

RESUMEN

KEY MESSAGE: BIG regulates the shoot stem cell population. The shoot apical meristem (SAM) contains a population of self-renewing cells, and provides daughter cells for initiation and development of aerial parts of plants. However, the underlying mechanisms of SAM size regulation remain largely unclear. Here, we identified a mutant that displayed a large SAM, designated big-shoot meristem (big-m), in Arabidopsis thaliana. The phenotype of big-m is caused by a new T-DNA insertion allele of BIG, causing a loss of function. The big-m mutant had more stem cells in the SAM than in the wild type. Expression of WUSCHEL (WUS) and SHOOTMERISTEMLESS (STM) was promoted in big-m compared with the wild type, showing that BIG functions upstream of WUS and STM. Therefore, BIG is an important regulator of the stem cell population in the SAM. Furthermore, genetic analysis indicated that BIG acts synergistically with PIN-FORMED1 (PIN1) in controlling SAM size. Our results suggest that BIG plays an important role in controlling Arabidopsis thaliana SAM growth via PIN1-mediated auxin homeostasis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión a Calmodulina/metabolismo , Meristema/citología , Meristema/genética , Brotes de la Planta/citología , Brotes de la Planta/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión a Calmodulina/genética , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Mutagénesis Insercional , Fenotipo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Células Madre/citología , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA