Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37112061

RESUMEN

As an energy-saving and efficient composites-forming technology, the properties of carbon fiber self-resistance electric (SRE) heating technology still need to be improved, which is not conducive to the popularization and application of this technology. To deal with this problem, the SRE heating technology was combined with a compression molding process to form carbon-fiber-reinforced polyamide 6 (CF/PA 6) composite laminates in this study. Orthogonal experiments of three factors (temperature, pressure, and impregnation time) were designed to study the effect of process parameters on the impregnation quality and mechanical properties of CF/PA 6 composite laminates and to obtain the optimized set of process parameters. Furthermore, the effect of the cooling rate on crystallization behaviors and mechanical properties of laminates was studied according to the optimized settings. The results show that the laminates possess a good comprehensive forming quality under process parameters using a forming temperature of 270 °C, forming pressure of 2.5 MPa, and an impregnation time of 15 min. The ununiform impregnation rate is due to the ununiform temperature field in the cross-section. When the cooling rate decreases from 29.56 °C/min to 2.64 °C/min, the crystallinity of the PA 6 matrix increases from 25.97% to 37.22%; the α-phase of the matrix crystal phase also increases significantly. The effect of the cooling rate on crystallization properties also further affects the impact properties; laminates with a faster cooling rate have stronger impact resistance.

2.
Polymers (Basel) ; 15(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37447524

RESUMEN

In this study, the thermoset-thermoplastic structure was produced through a co-curing technique together with an injection overmolding technique. Continuous fiber reinforced thermoset composite (TSC) was selected as thermoset material, while polyamide 6 (PA 6) was chosen as thermoplastic material. The influence of injection temperature, preheating temperature and injection speed on the interfacial bonding strength of hybrid thermoset-thermoplastic composites was investigated. The results show that increasing injection temperature and preheating temperature have significant effects on the increase in bonding strength, while injection speed has little effect on it. In addition, the bonding strength of the co-cured interface is enhanced after the injection overmolding process, which is further studied through molecular dynamic (MD) simulation. The molecular dynamic simulation result shows that the high temperature and pressure during the injection process only have a weak effect on enhancing the bonding strength of the co-cured interface, while the chemical reaction at the co-cured interface is the main reason for the enhancement. Furthermore, the more chemical reactions occur at the interface, the stronger the interface will be.

3.
ACS Appl Mater Interfaces ; 15(13): 17188-17194, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36946512

RESUMEN

Due to global warming and the energy crisis, incorporating passive radiative cooling into personal thermal management has attracted extensive attention. However, developing a wearable textile that reflects incoming sunlight and allows mid-infrared radiation transmission is still a tough challenge. Herein, a shish-kebab superstructure film was produced via a flow-induced crystallization strategy for personal radiative cooling. The resulting film endowed a high infrared transmittance (87%) and improved sunlight reflectivity (83%). A device was developed to simulate the human body skin, and the temperatures of the shish-kebab film were 2.5 and 2.6 °C lower than that of traditional textile in outdoor and indoor tests, respectively. In order to make the shish-kebab film more wearable, a series of modifications were then carried out. This study demonstrates the substantial potential to personal thermal management textiles.

4.
Nanomaterials (Basel) ; 12(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35630974

RESUMEN

The development of variotherm systems has helped to improve the quality of micro-injection molded products. Thin electric heaters have significant advantages in size, efficiency and installation convenience. However, the use of thin electric heaters has brought the problem of non-uniform temperature distribution of the insert. The good replication of the functional surfaces containing microstructures quickly and uniformly is still a challenge. In this work, the heating performance of the thin electric heater in a variotherm system is investigated by combining numerical simulations with experiments. Micro-injection molding of PP micropillars was also performed. The obtained results show that the addition of a transition layer with high thermal conductivity in the heating structure can optimize the uniformity of the temperature distribution of the insert. Furthermore, the replication heights of the micropillars can be significantly increased by the developed variotherm mold, which provides a new idea for the optimal design of a local variotherm system.

5.
Polymers (Basel) ; 14(5)2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35267867

RESUMEN

Carbon fiber-reinforced thermoplastic (CFRT) composites have been dramatically employed in the automotive field on account of their superior performances, such as being light weight and high-strength. Self-resistance electric (SRE) heating provides a solution to the problem of high energy consumption in the conventional process of CFRT composites. The effect of SRE heating on the surface chemical properties of carbon fiber (CF) was investigated by X-ray photoelectron spectroscopy (XPS). XPS analysis suggests that the C-O-C epoxy group, the CF surface, would be degraded after SRE heating with strong current intensity, while there are weak changes in the content of -C-OH, -C-O-C-, -C-NH2 and -COOH groups with current intensity. The interfacial bonding properties and the radial distribution function (RDF) of CF-PP interfaces were carried out by molecular dynamics (MD) simulation. The simulation results show that the adhesion between the PP and the E44 sizing agent is weaker than that between CF and PP. There are no interaction modes between the PP and E44 sizing agent except van der Waals and electrostatic adsorption. The presence of the E44 sizing agent does not change the bonding mechanism at the interface of CF/PP.

6.
Polymers (Basel) ; 12(6)2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32498238

RESUMEN

Hybrid fiber reinforced thermoplastic composites are receiving important attention in lightweight applications. The fabrication process of hybrid thermoplastic composites is that discontinuous fiber reinforced thermoplastics are injected onto the continuous fiber reinforced thermoplastics by over-molding techniques. The key issue during this process is to get a reliable interfacial bonding strength. To understand the bonding mechanism at the heterogeneous interface of hybrid thermoplastic composites which is difficult to obtain through experimental investigations, a series of molecular dynamic (MD) simulations were conducted in this paper. The influence of processing parameters on the interfacial characteristics, i.e., the distribution of interfacial high-density enrichment areas, radius of gyration, diffusion coefficient and interfacial energy, were investigated during the forming process of a heterogeneous interface. Simulation results reveal that some of molecule chains get across the interface and tangle with the molecules from the other layer, resulting in the penetration phenomenon near the interface zone. In addition, the melting temperature and injection pressure exhibit positive effects on the interfacial properties of hybrid composites. To further investigate the interfacial bonding strength and fracture mechanism of the heterogeneous interface, the uniaxial tensile and sliding simulations were performed. Results show that the non-bonded interaction energy plays a crucial role during the fracture process of heterogeneous interface. Meanwhile, the failure mode of the heterogeneous interface was demonstrated to evolve with the processing parameters.

7.
Polymers (Basel) ; 11(11)2019 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-31717858

RESUMEN

To make better use of fiber reinforced polymer composites in automotive applications, a clearer knowledge of its interfacial properties under dynamic and thermal loadings is necessary. In the present study, the interfacial behavior of glass fiber reinforced polypropylene (PP) composites under different loading temperatures and strain rates were investigated via molecular dynamics simulation. The simulation results reveal that PP molecules move easily to fit tensile deformation at higher temperatures, resulting in a lower interfacial strength of glass fiber-PP interface. The interfacial strength is enhanced with increasing strain rate because the atoms do not have enough time to relax at higher strain rates. In addition, the non-bonded interaction energy plays a crucial role during the tensile deformation of composites. The damage evolution of glass fiber-PP interface follows Weibull's distribution. At elevated temperatures, tensile loading is more likely to cause cohesive failure because the mechanical property of PP is lower than that of the glass fiber-PP interface. However, at higher strain rates, the primary failure mode is interfacial failure because the strain rate dependency of PP is more pronounced than that of the glass fiber-PP interface. The relationship between the failure modes and loading conditions obtained by molecular dynamics simulation is consistent with the author's previous experimental studies.

8.
Polymers (Basel) ; 11(4)2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-30960592

RESUMEN

Microfluidic chips have been widely applied in biochemical analysis, DNA sequencing, and disease diagnosis due to their advantages of miniaturization, low consumption, rapid analysis, and automation. Injection molded microfluidic chips have attracted great attention because of their short processing time, low cost, and mass production. The microchannel is the critical element of a microfluidic chip, and thus the microchannel replicability directly affects the performance of the microfluidic chip. In the current paper, a new method is proposed to evaluate the replicability of the microchannel profile via the root mean square value of the actual profile curve and the ideal profile curve of the microchannel. To investigate the effects of injection molding parameters (i.e., mold temperature, melting temperature, holding pressure, holding time, and injection rate) on microchannel replicability, a series of single-factor experiments were carried out. The results showed that, within the investigated experimental range, the increase of mold temperature, melt temperature, holding pressure, holding time, and injection rate could improve microchannel replicability accuracy. Specifically, the microchannels along the flow direction of the polymer melt were significantly affected by the mold temperature and melt temperature. Moreover, the replicability of the microchannel was influenced by the distance from the injection gate. The effect of microchannel replication on electrophoresis was demonstrated by a protein electrophoresis experiment.

9.
Polymers (Basel) ; 10(8)2018 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-30960828

RESUMEN

To clarify the individual contribution of viscoelastic and viscous deformation to the global nonlinear response of composites, multilevel cyclic loading-unloading recovery tensile tests were carried out. The experimental results show that there is a linear relationship between the viscous strain and viscoelastic strain of composites, regardless of the off-axis angle or loading stress level. On the basis of experimental results, a coupled damage-plasticity constitutive model was proposed. In this model, the plasticity theory was adopted to assess the evolution of viscous strains. The viscoelastic strain was represented as a linear function of viscous strains. Moreover, the Weibull function of the effective stress was introduced to evaluate the damage variables in terms of stiffness reduction. The tensile stress-strain curves, predicted by the proposed model, showed a good agreement with experimental results.

10.
Polymers (Basel) ; 10(4)2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-30966492

RESUMEN

In this study, epoxy molding compounds (EMCs) with aluminosilicate (AlS) and aluminum oxide (AlO) were fabricated as fillers by a twin-screw-extruder (TSE) and shaped to plate samples using injection molding. AlS and AlO, electrical insulating mineral materials, were used as fillers to improve the thermal conductivity (λc) of composites. Composites with different filler particle sizes, filler contents and filler geometry were fabricated and the influence of these variables on the λc was studied. The λc of composites was measured with the hot-disk method. The distribution of fillers in composites was observed using scanning electron microscopy (SEM). Using the Lewis-Nielsen equation, experimental values of λc were compared with those predicted. The predicted results fit the experimental values well. The result showed that λc increases significantly when the filler content of composites is approximately over 50 vol %.

11.
Polymers (Basel) ; 10(6)2018 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-30966695

RESUMEN

The present work addressed the creep behavior of quasi-unidirectional E-glass fabric reinforced polypropylene composites under off-axis tensile loading. A series of creep tests were performed on the composite at three different loading stress levels. The creep response of off-axis samples of quasi-unidirectional composites under a constant loading level can be clearly observed. A phenomenological viscoplasticity model was built for describing the creep behavior of the composite. To improve the accuracy of prediction, cyclic loading-unloading tests were adopted to determine the material constants in the model. The predicted results in terms of the strains after a load over a period of time were found to be satisfactory, compared with the experimental results. In addition, same failure mechanism was found in off-axis samples under quasi-static and creep loading cases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA