Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(29): e2203701119, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858304

RESUMEN

Conjugated polymers usually require strategies to expand the range of wavelengths absorbed and increase solubility. Developing effective strategies to enhance both properties remains challenging. Herein, we report syntheses of conjugated polymers based on a family of metalla-aromatic building blocks via a polymerization method involving consecutive carbyne shuttling processes. The involvement of metal d orbitals in aromatic systems efficiently reduces band gaps and enriches the electron transition pathways of the chromogenic repeat unit. These enable metalla-aromatic conjugated polymers to exhibit broad and strong ultraviolet-visible (UV-Vis) absorption bands. Bulky ligands on the metal suppress π-π stacking of polymer chains and thus increase solubility. These conjugated polymers show robust stability toward light, heat, water, and air. Kinetic studies using NMR experiments and UV-Vis spectroscopy, coupled with the isolation of well-defined model oligomers, revealed the polymerization mechanism.

2.
Biomacromolecules ; 25(4): 2261-2276, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38490188

RESUMEN

Polysaccharides are biodegradable, abundant, sustainable, and often benign natural polymers. The achievement of selective modification of polysaccharides is important for targeting specific properties and structures and will benefit future development of highly functional, sustainable materials. The synthesis of polysaccharides containing aldehyde or ketone moieties is a promising tool for achieving this goal because of the rich chemistry of aldehyde or ketone groups, including Schiff base formation, nucleophilic addition, and reductive amination. The obtained polysaccharide aldehydes or ketones themselves have rich potential for making useful materials, such as self-healing hydrogels, polysaccharide-protein therapeutic conjugates, or drug delivery vehicles. Herein, we review recent advances in synthesizing polysaccharides containing aldehyde or ketone moieties and briefly introduce their reactivity and corresponding applications.


Asunto(s)
Aldehídos , Cetonas , Aldehídos/química , Cetonas/química , Polisacáridos/química , Sistemas de Liberación de Medicamentos , Polímeros/química , Hidrogeles/química
3.
Biomacromolecules ; 24(6): 2596-2605, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37262428

RESUMEN

Site-specific modification is a great challenge for polysaccharide scientists. Chemo- and regioselective modification of polysaccharide chains can provide many useful natural-based materials and help us illuminate fundamental structure-property relationships of polysaccharide derivatives. The hemiacetal reducing end of a polysaccharide is in equilibrium with its ring-opened aldehyde form, making it the most uniquely reactive site on the polysaccharide molecule, ideal for regioselective decoration such as imine formation. However, all natural polysaccharides, whether they are branched or not, have only one reducing end per chain, which means that only one aldehyde-reactive substituent can be added. We introduce a new approach to selective functionalization of polysaccharides as an entrée to useful materials, appending multiple reducing ends to each polysaccharide molecule. Herein, we reduce the approach to practice using amide formation. Amine groups on monosaccharides such as glucosamine or galactosamine can react with carboxyl groups of polysaccharides, whether natural uronic acids like alginates, or derivatives with carboxyl-containing substituents such as carboxymethyl cellulose (CMC) or carboxymethyl dextran (CMD). Amide formation is assisted using the coupling agent 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM). By linking the C2 amines of monosaccharides to polysaccharides in this way, a new class of polysaccharide derivatives possessing many reducing ends can be obtained. We refer to this class of derivatives as multi-reducing-end polysaccharides (MREPs). This new family of derivatives creates the potential for designing polysaccharide-based materials with many potential applications, including in hydrogels, block copolymers, prodrugs, and as reactive intermediates for other derivatives.


Asunto(s)
Alginatos , Polisacáridos , Polisacáridos/química , Alginatos/química , Monosacáridos , Aldehídos , Amidas
4.
Carbohydr Polym ; 338: 122172, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38763719

RESUMEN

Polysaccharide-based hydrogels are promising for many biomedical applications including drug delivery, wound healing, and tissue engineering. We illustrate herein self-healing, injectable, fast-gelling hydrogels prepared from multi-reducing end polysaccharides, recently introduced by the Edgar group. Simple condensation of reducing ends from multi-reducing end alginate (M-Alg) with amines from polyethylene imine (PEI) in water affords a dynamic, hydrophilic polysaccharide network. Trace amounts of acetic acid can accelerate the gelation time from hours to seconds. The fast-gelation behavior is driven by rapid Schiff base formation and strong ionic interactions induced by acetic acid. A cantilever rheometer enables real-time monitoring of changes in viscoelastic properties during hydrogel formation. The reversible nature of these crosslinks (imine bonds, ionic interactions) provides a hydrogel with low toxicity in cell studies as well as self-healing and injectable properties. Therefore, the self-healing, injectable, and fast-gelling M-Alg/PEI hydrogel holds substantial promise for biomedical, agricultural, controlled release, and other applications.


Asunto(s)
Alginatos , Hidrogeles , Polisacáridos , Alginatos/química , Hidrogeles/química , Hidrogeles/síntesis química , Hidrogeles/farmacología , Polisacáridos/química , Polietileneimina/química , Humanos , Reología , Animales , Bases de Schiff/química , Inyecciones , Ratones
5.
Carbohydr Polym ; 336: 122105, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38670749

RESUMEN

In situ forming hydrogels are promising for biomedical applications, especially in drug delivery. The precursor solution can be injected at the target site, where it undergoes a sol-gel transition to afford a hydrogel. In this sense, the most significant characteristic of these hydrogels is fast gelation behavior after injection. This study describes an all-polysaccharide, rapidly in situ-forming hydrogel composed of carboxymethyl chitosan (CMCHT) and hydroxyethyl cellulose functionalized with aldehyde groups (HEC-Ald). The HEC-Ald was synthesized through acetal functionalization, followed by acid deprotection. This innovative approach avoids cleavage of pyran rings, as is inherent in the periodate oxidation approach, which is the most common method currently employed for adding aldehyde groups to polysaccharides. The resulting hydrogel exhibited fast stress relaxation, self-healing properties, and pH sensitivity, which allowed it to control the release of an encapsulated model drug in response to the medium pH. Based on the collected data, the HEC-Ald/CMCHT hydrogels show promise as pH-sensitive drug carriers.


Asunto(s)
Aldehídos , Celulosa , Celulosa/análogos & derivados , Quitosano , Quitosano/análogos & derivados , Hidrogeles , Quitosano/química , Concentración de Iones de Hidrógeno , Celulosa/química , Hidrogeles/química , Aldehídos/química , Portadores de Fármacos/química , Liberación de Fármacos , Polisacáridos/química
6.
Carbohydr Polym ; 328: 121699, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38220336

RESUMEN

Zwitterionic polymers, with their equal amounts of cationic and anionic functional groups, have found widespread utility including as non-fouling coatings, hydrogel materials, stabilizers, antifreeze materials, and drug carriers. Polysaccharide-derived zwitterionic polymers are attractive because of their sustainable origin, potential for lower toxicity, and possible biodegradability, but previous methods for synthesis of zwitterionic polysaccharide derivatives have been limited in terms of flexibility and attainable degree of substitution (DS) of charged entities. We report herein successful design and synthesis of zwitterionic polysaccharide derivatives, in this case based on cellulose, by reductive amination of oxidized 2-hydroxypropyl cellulose (Ox-HPC) with ω-aminoalkanoic acids. Reductive amination products could be readily obtained with DS(cation) (= DS(anion)) up to 1.6. Adduct hydrophilic/hydrophobic balance (amphiphilicity) can be influenced by selecting the appropriate chain length of the ω-aminoalkanoic acid. This strategy is shown to produce a range of amphiphilic, water-soluble, moderately high glass transition temperature (Tg) polysaccharide derivatives in just a couple of efficient steps from commercially available building blocks. The adducts were evaluated as crystallization inhibitors. They are strong inhibitors of crystallization even for the challenging, poorly soluble, fast-crystallizing prostate cancer drug enzalutamide, as supported by surface tension and Flory-Huggins interaction parameter results.

7.
Carbohydr Polym ; 300: 120213, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36372518

RESUMEN

Polysaccharide-based Schiff base hydrogels have promise for drug delivery, tissue engineering, and many other applications due to their reversible imine bond crosslinks. We describe herein pH-responsive, injectable, and self-healing hydrogels prepared by reacting oxidized hydroxypropyl cellulose (Ox-HPC) with carboxymethyl chitosan (CMCS). Simple combination of ketones from Ox-HPC side chains with amines from CMCS in water provides a dynamic, hydrophilic polysaccharide network. The reversible nature of these imine bonds in the presence of water provides a hydrogel with injectable and self-healing properties. Phenylalanine as a model amine-containing drug was linked by imine bonds to Ox-HPC within the hydrogel. Phenylalanine release was faster at the pH of the extracellular space around tumors (6.8) than in normal tissues (7.4), a surprising degree of pH sensitivity. Therefore, Ox-HPC/CMCS hydrogels show promise as drug carriers that may selectively target even slightly lower pH environments like the extracellular milieu around cancer cells.


Asunto(s)
Celulosa Oxidada , Quitosano , Hidrogeles/química , Quitosano/química , Liberación de Fármacos , Derivados de la Hipromelosa , Polisacáridos/química , Concentración de Iones de Hidrógeno , Agua , Iminas , Fenilalanina
8.
Curr Opin Chem Biol ; 70: 102200, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35998387

RESUMEN

Polysaccharides comprise an important class of natural polymers; they are abundant, diverse, polyfunctional, typically benign, and are biodegradable. Using polysaccharides to design in situ forming hydrogels is an attractive and important field of study since many polysaccharide-based hydrogels exhibit desirable characteristics including self-healing, responsiveness to environmental stimuli, and injectability. These characteristics are particularly useful for biomedical applications. This review will discuss recent discoveries in polysaccharide-based in situ forming hydrogels, including network architecture designs, curing mechanisms, physical and chemical properties, and potential applications.


Asunto(s)
Hidrogeles , Polisacáridos , Hidrogeles/química , Polímeros/química , Polisacáridos/química
9.
Chem Commun (Camb) ; 57(37): 4516-4519, 2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-33956025

RESUMEN

Two-photon induced polymerization for three-dimensional (3D) printing has attracted increasing attention. Here, we report the two-photon induced polymerization of triethylene glycol divinyl ether (TEGDVE) in a porous polymer film using 4,4',4''-nitrilotribenzoic acid (NTB) as the photosensitizer and diphenyliodonium hexafluorophosphate (HIP) as the initiator, enabling the printing of multi-layer structures in the porous support.

10.
RSC Adv ; 10(7): 3734-3744, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35492625

RESUMEN

The catalysis of boronic acids immobilized in polymer microgels can be modulated by bubbling with N2/CO2 gas, and in some cases by adding glucose, making their catalytic activity comparable or even superior to that of the corresponding free boronic acid monomers homogeneously dispersed in solutions and, more importantly, making these boronic-acid-containing polymer microgels able to catalyze alternate reactions that may extend the usefulness. This enhanced catalytic function of these boronic-acid-containing microgels as organoboron acid catalysts is plausibly achieved via in situ reversibly structural variations. Kinetic studies have been carried out on the model boronic-acid-catalyzed aza-Michael addition, aldol, amidation, and [4 + 2] cycloaddition reactions in order to better understand the catalytic process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA