Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 327(2): C254-C269, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38798269

RESUMEN

The podocyte cytoskeleton determines the stability of podocyte structure and function, and their imbalance plays a pathogenic role in podocyte diseases. However, the underlying mechanism of podocyte cytoskeleton damage is not fully understood. Here, we investigate the specific role of cuproptosis in inducing podocyte cytoskeleton injury. In in vitro and in vivo studies, exposure to high levels of copper and adriamycin (ADR) caused significant increases in copper concentration in intracellular and renal tissue. Moreover, excessive accumulation of copper induced cuproptosis, resulting in the destruction of the podocyte cytoskeleton. However, inhibition of copper accumulation to reduce cuproptosis also significantly alleviated the damage of podocyte cytoskeleton. In addition, inhibition of cuproptosis mitigated ADR-induced mitochondrial damage as well as the production of reactive oxygen species and depolarization of mitochondrial membrane potential, and restored adenosine triphosphate (ATP) synthesis. Among the transcriptome sequencing data, the difference of CXCL5 (C-X-C motif chemokine ligand 5) was the most significant. Both high copper and ADR exposure can cause upregulation of CXCL5, and CXCL5 deletion inhibits the occurrence of cuproptosis, thereby alleviating the podocyte cytoskeleton damage. This suggests that CXCL5 may act upstream of cuproptosis that mediates podocyte cytoskeleton damage. In conclusion, cuproptosis induced by excessive copper accumulation may induce podocyte cytoskeleton damage by promoting mitochondrial dysfunction, thereby causing podocyte injury. This indicates that cuproptosis plays an important role in the pathogenesis of podocyte injury and provides a basis for seeking potential targets for the treatment of chronic kidney disease.NEW & NOTEWORTHY Cuproptosis induced by excessive copper accumulation leads to podocyte cytoskeleton damage by promoting mitochondrial dysfunction, and CXCL5 acts as an upstream signal mediating the occurrence of cuproptosis.


Asunto(s)
Cobre , Citoesqueleto , Podocitos , Insuficiencia Renal Crónica , Podocitos/metabolismo , Podocitos/patología , Citoesqueleto/metabolismo , Citoesqueleto/patología , Animales , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/genética , Cobre/metabolismo , Cobre/toxicidad , Ratones , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Masculino , Doxorrubicina/toxicidad , Ratones Endogámicos C57BL , Potencial de la Membrana Mitocondrial , Humanos
2.
Am J Physiol Renal Physiol ; 326(5): F768-F779, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38450435

RESUMEN

Mitochondria are essential organelles in the human body, serving as the metabolic factory of the whole organism. When mitochondria are dysfunctional, it can affect all organs of the body. The kidney is rich in mitochondria, and its function is closely related to the development of kidney diseases. Studying the relationship between mitochondria and kidney disease progression is of great interest. In the past decade, scientists have made inspiring progress in investigating the role of mitochondria in the pathophysiology of renal diseases. This article discusses various mechanisms for maintaining mitochondrial quality, including mitochondrial energetics, mitochondrial biogenesis, mitochondrial dynamics, mitochondrial DNA repair, mitochondrial proteolysis and the unfolded protein response, mitochondrial autophagy, mitochondria-derived vesicles, and mitocytosis. The article also highlights the cross talk between mitochondria and other organelles, with a focus on kidney diseases. Finally, the article concludes with an overview of mitochondria-related clinical research.


Asunto(s)
Enfermedades Renales , Mitocondrias , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Renales/fisiopatología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Animales , Riñón/metabolismo , Riñón/fisiopatología , Riñón/patología , Metabolismo Energético , Autofagia , Dinámicas Mitocondriales , Mitofagia , Respuesta de Proteína Desplegada , Biogénesis de Organelos
3.
Biochem Biophys Res Commun ; 709: 149807, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38552554

RESUMEN

Minimal Change Disease (MCD), which is associated with podocyte injury, is the leading cause of nephrotic syndrome in children. A considerable number of patients experience relapses and require prolonged use of prednisone and immunosuppressants. Multi-drug resistance and frequent relapses can lead to disease progression to focal and segmental glomerulosclerosis (FSGS). To identify potential targets for therapy of podocyte injury, we examined microarray data of mRNAs in glomerular samples from both MCD patients and healthy donors, obtained from the GEO database. Differentially expressed genes (DEGs) were used to construct the protein-protein interactions (PPI) network through the application of the search tool for the retrieval of interacting genes (STRING) tool. The most connected genes in the network were ranked using cytoHubba. 16 hub genes were selected and validated by qRT-PCR. RAC2 was identified as a potential therapeutic target for further investigation. By downregulating RAC2, Adriamycin (ADR)-induced human podocytes (HPCs) injury was attenuated. EHT-1864, a small molecule inhibitor that targets the RAC (RAC1, RAC2, RAC3) family, proved to be more effective than RAC2 silencing in reducing HPCs injury. In conclusion, our research suggests that EHT-1864 may be a promising new molecular drug candidate for patients with MCD and FSGS.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Nefrosis Lipoidea , Podocitos , Humanos , Doxorrubicina/efectos adversos , Glomeruloesclerosis Focal y Segmentaria/inducido químicamente , Glomeruloesclerosis Focal y Segmentaria/tratamiento farmacológico , Glomeruloesclerosis Focal y Segmentaria/genética , Glomérulos Renales , Recurrencia
4.
Artículo en Inglés | MEDLINE | ID: mdl-39177930

RESUMEN

PURPOSE: To evaluate the application effects of The-Optimal-Lymph-Flow IT System in Chinese patients at high risk of developing breast cancer-related lymphedema. METHODS: A total of 104 breast cancer patients were randomly assigned to either the control group or the intervention group. The intervention group was provided with the The-Optimal-Lymph-Flow program, while the control group received the usual care. Trial outcomes including symptom experience, quality of life, and limb volume were evaluated at baseline, and at end of the 1- and 3-month trials. RESULTS: After controlling for covariates, the incidence of eight symptoms was significantly higher in the control group than in the intervention group. There were significant differences in the changes in the severity of symptoms and arm volume between the two groups from baseline to 3 months after the intervention. CONCLUSIONS: The application of TOLF in patients at high risk of developing lymphedema following breast cancer treatment significantly improved the lymphedema-related symptoms experienced in the early stage after surgery. Trial registration ChiCTR1800016713.

5.
Small ; 20(26): e2310568, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38239094

RESUMEN

Inverted flexible perovskite cells (fPSCs) have attracted much attention for their high efficiency and power per weight. Still, the steady-state output is one of the critical factors for their commercialization. In this paper, it is found that the steady-state current of inverted fPSCs based on nickel oxide nanoparticles (n-NiOx) continuously decreases under light illumination. Conversely, those based on magnetron-sputtered NiOx (sp-NiOx) exhibit the opposite result. Based on visualization of ion migration in the photoluminescence (PL) imaging microscopy tests, the discrepancies in the buried surfaces lead to the differences in ion migration in perovskite films, which triggers the temporary instability of the output current of devices during operation. The DFT theoretical calculation and experimental results reveal that NiOx films with different contents of Ni vacancies can modulate the crystallization of the perovskite films on the NiOx surfaces. Tuning the crystallization of the perovskite films is essential to stabilize the output current of fPSCs at a steady state. To demonstrate that, capsaicin is doped into the perovskite solutions to improve the quality of the perovskite buried interface. Finally, the corresponding fPSCs exhibit outstanding efficiency and stability during operation. These results provide valuable scientific guidance for fabricating fPSCs with stable operation under illumination conditions.

6.
Clin Genet ; 106(3): 354-359, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38780184

RESUMEN

Emerging research has demonstrated that genomic alterations disrupting topologically associated domains (TADs) and chromatin interactions underlie the pathogenic mechanisms of specific copy number variants (CNVs) in neurodevelopmental disorders. We report two patients with a de novo deletion and a duplication in chromosome 4q31, potentially causing FBX-related neurodevelopmental syndrome by affecting the regulatory region of FBXW7. High-throughput chromosome conformation capture (Hi-C) analysis using available capture data in neural progenitor cells revealed the rewiring of the TAD boundary close to FBXW7. Both patients exhibited facial dysmorphisms, cardiac and limb abnormalities, and neurodevelopmental delays, showing significant clinical overlap with previously reported FBXW7-related features. We also included an additional 10 patients with CNVs in the 4q31 region from the literature and the DECIPHER database for Hi-C analysis, which confirmed that disruption of the regulatory region of FBXW7 likely contributes to the developmental defects observed in these patients.


Asunto(s)
Cromosomas Humanos Par 4 , Variaciones en el Número de Copia de ADN , Proteína 7 que Contiene Repeticiones F-Box-WD , Trastornos del Neurodesarrollo , Humanos , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Variaciones en el Número de Copia de ADN/genética , Masculino , Femenino , Trastornos del Neurodesarrollo/genética , Cromosomas Humanos Par 4/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Preescolar , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Predisposición Genética a la Enfermedad , Niño , Lactante
7.
Drug Metab Dispos ; 52(8): 911-918, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38849209

RESUMEN

Arsenite is an important heavy metal. Some Chinese traditional medicines contain significant amounts of arsenite. The aim of this study was to investigate subacute exposure of arsenite on activities of cytochrome P450 enzymes and pharmacokinetic behaviors of drugs in rats. Midazolam, tolbutamide, metoprolol, omeprazole, caffeine, and chlorzoxazone, the probe substrates for cytochrome P450 (CYP) s3A, 2C6, 2D, 2C11, 1A, and 2E, were selected as probe drugs for the pharmacokinetic study. Significant decreases in areas under the curves of probe substrates were observed in rats after consecutive 30-day exposure to As at 12 mg/kg. Microsomal incubation study showed that the subacute exposure to arsenite resulted in little change in effects on the activities of P450 enzymes examined. However, everted gut sac study demonstrated that such exposure induced significant decreases in intestinal absorption of these drugs by both passive diffusion and carrier-mediated transport. In addition, in vivo study showed that the arsenite exposure decreased the rate of peristaltic propulsion. The decreases in intestinal permeability of the probe drugs and peristaltic propulsion rate most likely resulted in the observed decreases in the internal exposure of the probe drugs. Exposure to arsenite may lead to the reduction of the efficiencies of pharmaceutical agents coadministered resulting from the observed drug-drug interactions. SIGNIFICANCE STATEMENT: Exposure to arsenite may lead to the reduction of the efficiencies of pharmaceutical agents coadministered resulting from the observed drug-drug interactions. The present study, we found that P450 enzyme probe drug exposure was reduced in arsenic-exposed animals (areas under the curve) and the intestinal absorption of the drug was reduced in the animals. Subacute arsenic exposure tends to cause damage to intestinal function, which leads to reduced drug absorption.


Asunto(s)
Arsenitos , Sistema Enzimático del Citocromo P-450 , Interacciones Farmacológicas , Ratas Sprague-Dawley , Animales , Arsenitos/toxicidad , Arsenitos/farmacocinética , Masculino , Ratas , Sistema Enzimático del Citocromo P-450/metabolismo , Absorción Intestinal/efectos de los fármacos , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Omeprazol/farmacología , Omeprazol/farmacocinética , Midazolam/farmacocinética , Cafeína/farmacocinética , Clorzoxazona/farmacocinética , Metoprolol/farmacocinética , Metoprolol/farmacología , Tolbutamida/farmacocinética , Compuestos de Sodio/toxicidad , Compuestos de Sodio/farmacocinética
8.
Clin Sci (Lond) ; 138(13): 777-795, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38860674

RESUMEN

Renal tubular injury is considered as the main pathological feature of acute kidney injury (AKI), and mitochondrial dysfunction in renal tubular cells is implicated in the pathogenesis of AKI. The estrogen-related receptor γ (ERRγ) is a member of orphan nuclear receptors which plays a regulatory role in mitochondrial biosynthesis, energy metabolism and many metabolic pathways. Online datasets showed a dominant expression of ERRγ in renal tubules, but the role of ERRγ in AKI is still unknown. In the present study, we investigated the role of ERRγ in the pathogenesis of AKI and the therapeutic efficacy of ERRγ agonist DY131 in several murine models of AKI. ERRγ expression was reduced in kidneys of AKI patients and AKI murine models along with a negative correlation to the severity of AKI. Consistently, silencing ERRγ in vitro enhanced cisplatin-induced tubular cells apoptosis, while ERRγ overexpression in vivo utilizing hydrodynamic-based tail vein plasmid delivery approach alleviated cisplatin-induced AKI. ERRγ agonist DY131 could enhance the transcriptional activity of ERRγ and ameliorate AKI in various murine models. Moreover, DY131 attenuated the mitochondrial dysfunction of renal tubular cells and metabolic disorders of kidneys in AKI, and promoted the expression of the mitochondrial transcriptional factor A (TFAM). Further investigation showed that TFAM could be a target gene of ERRγ and DY131 might ameliorate AKI by enhancing ERRγ-mediated TFAM expression protecting mitochondria. These findings highlighted the protective effect of DY131 on AKI, thus providing a promising therapeutic strategy for AKI.


Asunto(s)
Lesión Renal Aguda , Receptores de Estrógenos , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/genética , Animales , Receptores de Estrógenos/metabolismo , Humanos , Masculino , Ratones , Mitocondrias/metabolismo , Ratones Endogámicos C57BL , Enfermedades Metabólicas/metabolismo , Apoptosis , Modelos Animales de Enfermedad , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Cisplatino , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética
9.
Bioorg Chem ; 144: 107090, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38218070

RESUMEN

Clinical experiences of herbal medicine (HM) have been used to treat a variety of human intractable diseases. As the treatment of diseases using HM is characterized by multi-components and multi-targets, it is difficult to determine the bio-active components, explore the molecular targets and reveal the mechanisms of action. Metabolomics is frequently used to characterize the effect of external disturbances on organisms because of its unique advantages on detecting changes in endogenous small-molecule metabolites. Its systematicity and integrity are consistent with the effective characteristics of HM. After HM intervention, metabolomics can accurately capture and describe the behavior of endogenous metabolites under the disturbance of functional compounds, which will be used to decode the bioactive ingredients of HM and expound the molecular targets. Metabolomics can provide an approach for explaining HM, addressing unclear clinical efficacy and undefined mechanisms of action. In this review, the metabolomics strategy and its applications in HM are systematically introduced, which offers valuable insights for metabolomics methods to characterizing the pharmacological effects and molecular targets of HM.


Asunto(s)
Medicamentos Herbarios Chinos , Plantas Medicinales , Humanos , Medicamentos Herbarios Chinos/farmacología , Metabolómica/métodos
10.
BMC Geriatr ; 24(1): 159, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360610

RESUMEN

BACKGROUND: This study aimed to evaluate the correlation between serum methylmalonic acid (MMA) levels and cognition function in patients with chronic kidney disease (CKD). METHODS: In this cross-sectional study, we included 537 CKD individuals aged ≥ 60-year-old with albuminuria from the National Health and Nutrition Examination Survey (NHANES) 2011-2014. Four cognitive tests including the Digit Symbol Substitution Test (DSST), the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) Delayed Recall and Word Learning tests, and the Animal Fluency test (AF) were performed. Associations between MMA and cognition scores were assessed with linear regression models. RESULTS: MMA level was negatively associated with residual renal function and nutrition status. After multivariate adjustment, elevated serum MMA levels were independently correlated with decline of cognition in CKD patients with albuminuria. CONCLUSION: Our study showed that higher serum MMA levels were independently associated with the presence of cognition dysfunction in CKD patients. The exact pathogenesis of MMA and cognition needs further research.


Asunto(s)
Disfunción Cognitiva , Insuficiencia Renal Crónica , Humanos , Anciano , Encuestas Nutricionales , Ácido Metilmalónico , Albuminuria/complicaciones , Albuminuria/diagnóstico , Estudios Transversales , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/etiología , Cognición , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/diagnóstico
11.
BMC Public Health ; 24(1): 526, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378516

RESUMEN

BACKGROUND: Understanding the trends of tuberculosis (TB) burden and its risk factors at the provincial level in the context of global End TB targets is crucial to identify the progress and challenges in TB control. We aimed to estimate the burden of TB and risk factors for death from 2006 to 2020 for the first time in Guizhou Province, China. METHODS: Data were collected from the national TB surveillance system. Four indicators of TB burden and their corresponding age-standardized rates (ASRs), including incidence (ASIR), prevalence (ASPR), mortality (ASMR) and disability-adjusted life years (DALYs) (ASDR), were estimated and stratified by year, age, gender and prefecture. Temporal trends of ASRs were presented by locally weighted regression, and the annual percentage change was calculated. The correlation between gross domestic product (GDP) per capita and ASRs was evaluated by Pearson correlation analysis. The associated risk factors for death in PTB patients were determined using logistic regression models. RESULTS: A total of 557,476 pulmonary TB (PTB) cases and 11,234 deaths were reported, including 2233 (19.9%) TB specific deaths and 9001 (80.1%) deaths from other causes. The 15-year average incidence, prevalence and mortality rates were 94.6, 102.6 and 2.1 per 100,000 population, respectively. The average DALY rate was 0.60 per 1000 population. The ASIR and ASPR have shown downward trends since 2012, with the largest percentage decrease in 2020 (ASIR: -29.8%; ASPR: -30.5%). The number in TB specific deaths consistently decreased during the study period (P<0.001), while the increase in deaths from other causes drove the overall upward trend in ASMR and ASDR. Four ASRs remained high in males and 5 prefectures. GDP per capita was negatively associated with the ASIR, ASPR and ASDR (P<0.05). Among PTB patients, men, patients with no fixed job, those with a low GDP level, patients with increasing age, those previously treated, those with severe symptoms, those transferred in and those receiving directly observed treatment were more likely to suffer death. CONCLUSION: Guizhou has made progress in reducing PTB cases and TB specific deaths over the last 15 years. Targeted interventions are needed to address these risk factors for death in PTB patients and high-risk areas.


Asunto(s)
Tuberculosis Pulmonar , Tuberculosis , Masculino , Humanos , Factores de Riesgo , Tuberculosis/epidemiología , Tuberculosis Pulmonar/epidemiología , China/epidemiología , Años de Vida Ajustados por Discapacidad , Años de Vida Ajustados por Calidad de Vida , Carga Global de Enfermedades , Incidencia , Salud Global
12.
Mar Drugs ; 22(3)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38535479

RESUMEN

Phycoerythrin and polysaccharides have significant commercial value in medicine, cosmetics, and food industries due to their excellent bioactive functions. To maximize the production of biomass, phycoerythrin, and polysaccharides in Porphyridium purpureum, culture media were supplemented with calcium gluconate (CG), magnesium gluconate (MG) and polypeptides (BT), and their optimal amounts were determined using the response surface methodology (RSM) based on three single-factor experiments. The optimal concentrations of CG, MG, and BT were determined to be 4, 12, and 2 g L-1, respectively. The RSM-based models indicated that biomass and phycoerythrin production were significantly affected only by MG and BT, respectively. However, polysaccharide production was significantly affected by the interactions between CG and BT and those between MG and BT, with no significant effect from BT alone. Using the optimized culture conditions, the maximum biomass (5.97 g L-1), phycoerythrin (102.95 mg L-1), and polysaccharide (1.42 g L-1) concentrations met and even surpassed the model-predicted maximums. After optimization, biomass, phycoerythrin, and polysaccharides concentrations increased by 132.3%, 27.97%, and 136.67%, respectively, compared to the control. Overall, this study establishes a strong foundation for the highly efficient production of phycoerythrin and polysaccharides using P. purpureum.


Asunto(s)
Gluconatos , Porphyridium , Ficoeritrina , Gluconato de Calcio , Polisacáridos
13.
Ecotoxicol Environ Saf ; 274: 116183, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38471343

RESUMEN

Arsenic is an environmentally ubiquitous toxic metalloid. Chronic exposure to arsenic may lead to arsenicosis, while no specific therapeutic strategies are available for the arsenism patients. And Ginkgo biloba extract (GBE) exhibited protective effect in our previous study. However, the mechanisms by which GBE protects the arsenism patients remain poorly understood. A liquid chromatography-mass spectrometry (LC-MS) based untargeted metabolomics analysis was used to study metabolic response in arsenism patients upon GBE intervention. In total, 39 coal-burning type of arsenism patients and 50 healthy residents were enrolled from Guizhou province of China. The intervention group (n = 39) were arsenism patients orally administered with GBE (three times per day) for continuous 90 days. Plasma samples from 50 healthy controls (HC) and 39 arsenism patients before and after GBE intervention were collected and analyzed by established LC-MS method. Statistical analysis was performed by MetaboAnalyst 5.0 to identify differential metabolites. Multivariate analysis revealed a separation in arsenism patients between before (BG) and after GBE intervention (AG) group. It was observed that 35 differential metabolites were identified between BG and AG group, and 30 of them were completely or partially reversed by GBE intervention, with 14 differential metabolites significantly up-regulated and 16 differential metabolites considerably down-regulated. These metabolites were involved in promoting immune response and anti-inflammatory functions, and alleviating oxidative stress. Taken together, these findings indicate that the GBE intervention could probably exert its protective effects by reversing disordered metabolites modulating these functions in arsenism patients, and provide insights into further exploration of mechanistic studies.


Asunto(s)
Arsénico , Extracto de Ginkgo , Ginkgo biloba , Humanos , Ginkgo biloba/química , Ginkgo biloba/metabolismo , Cromatografía Liquida , Cromatografía Líquida con Espectrometría de Masas , Arsénico/toxicidad , Espectrometría de Masas en Tándem/métodos , Extractos Vegetales/farmacología , Extractos Vegetales/análisis
14.
Ecotoxicol Environ Saf ; 278: 116360, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38678690

RESUMEN

Methylmercury (MeHg) is a neurotoxin associated with foetal neurodevelopmental and adult cognitive deficits. Neurons are highly dependent on the tricarboxylic acid cycle and oxidative phosphorylation to produce ATP and meet their high energy demands. Therefore, mitochondrial quality control (MQC) is critical for neuronal homeostasis. While existing studies have generated a wealth of data on the toxicity of MeHg, the complex cascades and molecular pathways governing the mitochondrial network remain to be elucidated. Here, 0.6, 1.2 and 2.4 mg/kg body weight of MeHg were administered intragastrically to pregnant Sprague Dawley rats to model maternal MeHg exposure. The results of the in vivo study revealed that MeHg-treated rats tended to perform more directionless repetitive strategies in the Morris Water Maze and fewer target-orientation strategies than control offspring. Moreover, pathological injury and synaptic toxicity were observed in the hippocampus. Transmission electron microscopy (TEM) demonstrated that the autophagosomes encapsulated damaged mitochondria, while showing a typical mitochondrial fission phenotype, which was supported by the activation of PINK1-dependent key regulators of mitophagy. Moreover, there was upregulation of DRP1 and FIS1. Additionally, MeHg compensation promoted mitochondrial biogenesis, as evidenced by the activation of the mitochondrial PGC1-α-NRF1-TFAM signalling pathway. Notably, SIRT3/AMPK was activated by MeHg, and the expression and activity of p-AMPK, p-LKB1 and SIRT3 were consistently coordinated. Collectively, these findings provide new insights into the potential molecular mechanisms regulating MeHg-induced cognitive deficits through SIRT3/AMPK MQC network coordination.


Asunto(s)
Disfunción Cognitiva , Compuestos de Metilmercurio , Mitocondrias , Ratas Sprague-Dawley , Compuestos de Metilmercurio/toxicidad , Animales , Mitocondrias/efectos de los fármacos , Ratas , Femenino , Disfunción Cognitiva/inducido químicamente , Embarazo , Hipocampo/efectos de los fármacos , Hipocampo/patología , Exposición Materna , Efectos Tardíos de la Exposición Prenatal/inducido químicamente
15.
Ecotoxicol Environ Saf ; 278: 116441, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38733805

RESUMEN

Oxybenzone (OBZ; benzophenone-3, CAS# 131-57-7), as a new pollutant and ultraviolet absorbent, shows a significant threat to the survival of phytoplankton. This study aims to explore the acute toxic effects of OBZ on the growth of the microalga Selenastrum capricornutum, as well as the mechanisms for its damage to the primary metabolic pathways of photosynthesis and respiration. The results demonstrated that the concentrations for 50 % of maximal effect (EC50) of OBZ for S. capricornutum were 9.07 mg L-1 and 8.54 mg L-1 at 72 h and 96 h, respectively. A dosage of 4.56 mg L-1 OBZ significantly lowered the photosynthetic oxygen evolution rate of S. capricornutum in both light and dark conditions for a duration of 2 h, while it had no effect on the respiratory oxygen consumption rate under darkness. OBZ caused a significant decline in the efficiency of photosynthetic electron transport due to its damage to photosystem II (PSII), thereby decreasing the photosynthetic oxygen evolution rate. Over-accumulated H2O2 was produced under light due to the damage caused by OBZ to the donor and acceptor sides of PSII, resulting in increased peroxidation of cytomembranes and inhibition of algal respiration. OBZ's damage to photosynthesis and respiration will hinder the conversion and reuse of energy in algal cells, which is an important reason that OBZ has toxic effects on S. capricornutum. The present study indicated that OBZ has an acute toxic effect on the microalga S. capricornutum. In the two most important primary metabolic pathways in algae, photosynthesis is more sensitive to the toxicity of OBZ than respiration, especially in the dark.


Asunto(s)
Benzofenonas , Microalgas , Fotosíntesis , Protectores Solares , Fotosíntesis/efectos de los fármacos , Benzofenonas/toxicidad , Microalgas/efectos de los fármacos , Protectores Solares/toxicidad , Contaminantes Químicos del Agua/toxicidad , Peróxido de Hidrógeno/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/efectos de los fármacos , Rayos Ultravioleta , Transporte de Electrón/efectos de los fármacos
16.
Ecotoxicol Environ Saf ; 283: 116791, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068742

RESUMEN

Environmental heavy metals pollution have seriously threatened the health of human beings. An increasing number of researches have demonstrated that environmental heavy metals can influence the telomere length of Peripheral Blood Mononuclear Cells (PBMCs), which implicate biological aging as well as predicts diseases. Our previous study has shown that methylmercury (MeHg)-induced telomere shortening in rat brain tissue was associated with urinary melatonin metabolite 6-sulfatoxymelatonin (aMT6s) levels. Here, we aimed to further elucidate the impact of 4 typical heavy metals (As, Hg, Cd and Pb) on telomere length of PBMCs and their association with urinary aMT6s in rats. In this study, eighty-eight male Sprague-Dawley rats were randomized grouped into eleven groups. Among them, forty 3-month-old (young) and forty 12-month-old (middle-aged) rats were divided into young or middle-aged control groups as well as typical heavy metals exposed groups, respectively. Eight 24-month-old rats (old) was divided into aging control group. The results showed that MeHg exposure in young rats while sodium arsenite (iAs), MeHg, cadmium chloride (CdCl2), lead acetate (PbAc) exposure in middle-aged rats for 3 months significantly reduced the levels of and urinary aMT6s, as well as telomere length of PBMCs. In addition, they also induced abnormalities in serum oxidative stress (SOD, MDA and GPx) and inflammatory (IL-1ß, IL-6 and TNF-α) indicators. Notably, there was a significant positive correlation between declined level of urinary aMT6s and the shortening of telomere length in PBMCs in rats exposed to 4 typical heavy metals. These results suggested that 4 typical heavy metals exposure could accelerate the reduction of telomere length of PBMCs partially by inducing oxidative stress and inflammatory in rats, while ageing may be an important synergistic factor. Urinary aMT6s detection may be a alternative method to reflect telomere toxic effects induced by heavy metal exposure.

17.
Molecules ; 29(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38792060

RESUMEN

As links between genotype and phenotype, small-molecule metabolites are attractive biomarkers for disease diagnosis, prognosis, classification, drug screening and treatment, insight into understanding disease pathology and identifying potential targets. Metabolomics technology is crucial for discovering targets of small-molecule metabolites involved in disease phenotype. Mass spectrometry-based metabolomics has implemented in applications in various fields including target discovery, explanation of disease mechanisms and compound screening. It is used to analyze the physiological or pathological states of the organism by investigating the changes in endogenous small-molecule metabolites and associated metabolism from complex metabolic pathways in biological samples. The present review provides a critical update of high-throughput functional metabolomics techniques and diverse applications, and recommends the use of mass spectrometry-based metabolomics for discovering small-molecule metabolite signatures that provide valuable insights into metabolic targets. We also recommend using mass spectrometry-based metabolomics as a powerful tool for identifying and understanding metabolic patterns, metabolic targets and for efficacy evaluation of herbal medicine.


Asunto(s)
Biomarcadores , Espectrometría de Masas , Metabolómica , Metabolómica/métodos , Humanos , Biomarcadores/metabolismo , Espectrometría de Masas/métodos , Descubrimiento de Drogas/métodos , Metaboloma , Animales
18.
Pharm Biol ; 62(1): 356-366, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38720666

RESUMEN

CONTEXT: Yi-Shen-Hua-Shi (YSHS) is a traditional Chinese medicine that treats chronic kidney disease (CKD). However, its efficacy in reducing proteinuria and underlying mechanisms is unknown. OBJECTIVE: This single-center randomized controlled trial explored whether YSHS could improve proteinuria and modulate the gut microbiota. MATERIALS AND METHODS: 120 CKD patients were enrolled and randomized to receive the renin-angiotensin-aldosterone system (RAAS) inhibitor plus YSHS (n = 56) or RAAS inhibitor (n = 47) alone for 4 months, and 103 patients completed the study. We collected baseline and follow-up fecal samples and clinical outcomes from participants. Total bacterial DNA was extracted, and the fecal microbiome was analyzed using bioinformatics. RESULTS: Patients in the intervention group had a significantly higher decrease in 24-h proteinuria. After 4 months of the YSHS intervention, the relative abundance of bacteria that have beneficial effects on the body, such as Faecalibacterium, Lachnospiraceae, Lachnoclostridium, and Sutterella increased significantly, while pathogenic bacteria such as the Eggerthella and Clostridium innocuum group decreased. However, we could not find these changes in the control group. Redundancy analysis showed that the decline in 24-h proteinuria during follow-up was significantly correlated with various taxa of gut bacteria, such as Lachnospiraceae and the Lachnoclostridium genus in the YSHS group. KEGG analysis also showed the potential role of YSHS in regulating glycan, lipid, and vitamin metabolism. DISCUSSION AND CONCLUSION: The YSHS granule reduced proteinuria associated with mitigating intestinal microbiota dysbiosis in CKD patients. The definite mechanisms of YSHS to improve proteinuria need to be further explored. TRIAL REGISTRATION: ChiCTR2300076136, retrospectively registered.


Asunto(s)
Medicamentos Herbarios Chinos , Disbiosis , Microbioma Gastrointestinal , Proteinuria , Insuficiencia Renal Crónica , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Femenino , Insuficiencia Renal Crónica/microbiología , Insuficiencia Renal Crónica/tratamiento farmacológico , Proteinuria/tratamiento farmacológico , Proteinuria/microbiología , Persona de Mediana Edad , Medicamentos Herbarios Chinos/farmacología , Heces/microbiología , Anciano , Adulto , Medicina Tradicional China/métodos
19.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3396-3403, 2024 Jun.
Artículo en Zh | MEDLINE | ID: mdl-39041103

RESUMEN

This study utilized a prospective, large-sample, multi-center, and registered key specialty approach of hospitals to monitor the application of Reduning Injection. A total of 100 249 adolescent patients aged 14 years and below who received Reduning Injection were monitored, resulting in 83 cases of adverse events, with 76 of them being classified as adverse drug reaction(ADR). The calculated incidence rate of ADR for Reduning Injection was 0.076%, indicating a very rare ADR. The main symptoms of ADR were pruritus, diarrhea, abdominal pain, vomiting, high fever, dyspnea, convulsion, and chills. All ADR cases were reported for the first time, including three new ADR cases and 73 known ADR cases. The categories of ADR was general ADR. All ADR was mild in severity. There were more males than females in ADR patients. One patient had a history of ADR, and the drug causing ADR was buprofen. The largest number of ADR cases occurred when the dosage of Reduning injection was 5-10 mL. The dropping speed was 30 drops or less per min, and the solvent type was 5% glucose injection. The most common manifestation of ADR patients was pruritus, followed by diarrhea, abdominal pain, vomiting, high fever, dyspnea, convulsions, and chills. 72 patients(94.74% of ADR patients) discontinued the drug, and three patients(3.95% of ADR patients) were given oxygen inhalation. 47 cases(61.84% of ADR patients) were treated with medication, of which dexamethasone was the most used(24 cases, 46.15% of ADR patients). 76 ADR patients were cured or improved. ADRs are more likely to occur when diagnosed with acute bronchitis by western medicine and cough by traditional Chinese medicine(TCM), TCM syndrome type is wind heat syndrome, and the combination medicine is ambroxol hydrochloride and bromhexine hydrochloride injection, ascorbic acid/vitamin C injection. This result provides an evidence-based safety basis for active pharmacovigilance of Reduning Injection in adolescents aged 14 years and below.


Asunto(s)
Medicamentos Herbarios Chinos , Humanos , Femenino , Masculino , Adolescente , Niño , Estudios Prospectivos , Medicamentos Herbarios Chinos/efectos adversos , Medicamentos Herbarios Chinos/administración & dosificación , Preescolar , Lactante , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Hospitales , Inyecciones
20.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(7): 677-682, 2024 Jul 15.
Artículo en Zh | MEDLINE | ID: mdl-39014942

RESUMEN

OBJECTIVES: To study the diagnosis, treatment, and complications of hypophosphatemic rickets (HR) in children, explore effectiveness evaluation indicators for the disease, and understand the pattern in height growth among these patients. METHODS: A retrospective analysis of the initial clinical data and five-year follow-up data of 85 children with HR treated at Children's Hospital of Nanjing Medical University from January 2008 to December 2022. RESULTS: Among the 85 children with HR, there were 46 males (54%) and 39 females (46%). The age at initial diagnosis ranged from 6 months to 13 years and 9 months, with a median age of 2.75 years. The average height standard deviation score was -2.0±1.1. At initial diagnosis, children exhibited reduced blood phosphate levels and elevated alkaline phosphatase (ALP), with 99% (84/85) presenting with lower limb deformities. The positive rate for PHEX gene mutations was 93% (55/59). One year post-treatment, there was a significant reduction in ALP levels and the gap between the lower limbs (P<0.05). The fastest height growth occurred in the first year after treatment, at 8.23 cm/year, with a peak height velocity (PHV) phase lasting about two years during puberty. The height increased by 9-20 cm in male children during the PHV stage and 10-15 cm in female children. Major complications included nephrocalcinosis and hyperparathyroidism. The incidence rate of nephrocalcinosis in the first year after treatment was 55% (22/40), which increased with the duration of the disease (P<0.001); an increased urinary phosphate/creatinine ratio was positively associated with a higher risk of nephrocalcinosis (OR=1.740, P<0.001). The incidence of hyperparathyroidism in the first year after treatment was 64% (27/42). CONCLUSIONS: For children presenting with lower limb deformities, short stature, and slow growth, early testing for blood levels of phosphate, calcium, and ALP, along with imaging examinations of the lower limbs, can aid in the early diagnosis of HR. Genetic testing may be utilized for definitive confirmation when necessary. ALP combined with improvements in skeletal deformities and annual height growth can serve as indicators of therapeutic effectiveness for HR. Compared to normal children, children with HR demonstrate a lower height increase during the PHV phase, necessitating close follow-up and timely adjustment of treatment plans Citation:Chinese Journal of Contemporary Pediatrics, 2024, 26(7): 677-682.


Asunto(s)
Raquitismo Hipofosfatémico , Humanos , Masculino , Femenino , Niño , Estudios Retrospectivos , Preescolar , Lactante , Adolescente , Estudios de Seguimiento , Raquitismo Hipofosfatémico/genética , Raquitismo Hipofosfatémico/etiología , Fosfatasa Alcalina/sangre , Estatura , Endopeptidasa Neutra Reguladora de Fosfato PHEX/genética , Fosfatos/sangre , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA