Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Hazard Mater ; 478: 135613, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39180994

RESUMEN

This investigation explored the potential of utilizing alkali-treated corn cob (CC) as a solid carbon source to improve NOX and SO2 removal from flue gas. Leaching experiments unveiled a hierarchy of chemical oxygen demand release capacity: 0.03 mol/L alkali-treated CC > 0.02 mol/L > 0.01 mol/L > 0.005 mol/L > control. In NOX and SO2 removal experiments, as the inlet NOX concentration rose from 300 to 1000 mg/m3, the average NOX removal efficiency increased from 58.56 % to 80.00 %. Conversely, SO2 removal efficiency decreased from 99.96 % to 91.05 %, but swiftly rebounded to 98.56 % by day 18. The accumulation of N intermediates (NH4+, NO3-, NO2-) increased with escalating inlet NOX concentration, while the accumulation of S intermediates (SO42-, SO32-, S0) varied based on shifts in the population of functional bacteria. The elevation in inlet NOX concentration stimulated the growth of denitrifying bacteria, enhancing NOX removal efficiency. Concurrently, the population of nitrate-reducing sulfur-oxidizing bacteria and sulfate-reducing bacteria expanded, aiding in the accumulation of S0 and the removal of SO2. The comparison experiments on carbon sources confirmed the comparable NOX and SO2 removal efficiencies of alkali-treated CC and glucose, yet underscored differences in intermediates accumulation due to distinct genus structures.


Asunto(s)
Contaminantes Atmosféricos , Álcalis , Carbono , Dióxido de Azufre , Zea mays , Zea mays/química , Dióxido de Azufre/química , Carbono/química , Contaminantes Atmosféricos/química , Álcalis/química , Óxidos de Nitrógeno/química , Análisis de la Demanda Biológica de Oxígeno
2.
Sci Total Environ ; 794: 148650, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34198081

RESUMEN

The present study aimed to clarify the effect of oxygen respiration on biotransformation of alternative electron acceptors (e.g., nitrate and sulfate) underlying the simultaneous removal of ammonium and sulfate in a single aerated sequencing batch reactor. Complete nitrification was achieved in feast condition, while denitrification was carried out in both feast and famine conditions when aeration intensity (AI) was higher than 0.22 L/(L·min). Reactors R1 [0.56 L/(L·min)], R2 [0.22 L/(L·min)], and R3 [0.08 L/(L·min)] achieved 72.39% sulfate removal efficiency in feast condition, but H2S release occurred in R3. Following exogenous substrate depletion, sulfate concentration increased again and exceeded the influent value in R1, indicating that sulfate transformation was affected by oxygen intrusion. Metagenomic analysis showed that a higher AI promoted sulfate reduction by switching from dissimilatory to assimilatory pathway. Lower AI-acclimated microorganisms (R3) produced H2S and ammonium, while higher AI-acclimated microorganisms (R1) accumulated nitrite, which confirmed that biotransformation of N and S was strongly regulated by redox imbalance driven by aeration. This implied that respiration control, a microbial self-regulation mechanism, was linked to the dynamic imbalance between electron donors and electron acceptors. Aerobic nitrate (sulfate) reduction, as one of the effects of respiration control, could be used as an alternative strategy to compensate for dynamic imbalance, when supported by efficient endogenous metabolism. Moderate aeration induced microorganisms to change their energy conservation and survival strategy through respiration control and inter-genus protection of respiratory activity among keystone taxa (including Azoarcus in R1, Thauera in R2, and Thiobacillus, Ottowia, and Geoalkalibacter in R3) to form an optimal niche in response to oxygen intrusion and achieve benign biotransformation of C, N, and S without toxic intermediate accumulation. This study clarified the biotransformation mechanism of ammonium and sulfate driven by aeration and provided theoretical guidance for optimizing existing aeration-based techniques.


Asunto(s)
Compuestos de Amonio , Nitrógeno , Reactores Biológicos , Biotransformación , Desnitrificación , Metagenoma , Nitrificación , Aguas del Alcantarillado , Sulfatos , Azufre
3.
Water Res ; 160: 209-216, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31152946

RESUMEN

Although photochemical transformation is a major degradation pathway for antibiotics in surface freshwaters, the photodegradation of antibiotics from freshwaters downstream into seawater is largely unknown. Herein, sulfadiazine was adopted as a representative antibiotic to probe the alteration of photolytic kinetics along freshwater to seawater sampled from Qinzhou Bay, China. The results showed that the photodegradation rate constants of sulfadiazine significantly increased in estuarine waters along freshwaters to seawaters. Experiments in synthetic water samples with isolated local dissolved organic matter (IL-DOM) indicated that the increased photodegradation of sulfadiazine is attributed to the integrative effect of both IL-DOM and halide ions. Radical quenching experiments with tert-butanol (quenching of ·OH) and isopropanol (quenching of both ·OH and reactive halogen species, RHS) demonstrated that RHS are largely responsible for the halide-specific enhancement in the photodegradation of sulfadiazine, rather than other reactive species, such as triplet-excited IL-DOM and ·OH. However, triplet-excited IL-DOM was involved in the production of RHS by the oxidation of halide ions by the triplet-excited states. Experiments conducted with DOM analogues verified DOM-sensitized RHS formation, and the degradation induced by RHS is positively correlated with the triplet-excited reduction potentials of DOM analogues. These findings are helpful in deeply understanding the transformation of antibiotics, and demonstrate the importance of RHS-induced degradation in antibiotics fate models in estuarine water systems.


Asunto(s)
Sulfadiazina , Contaminantes Químicos del Agua , China , Halógenos , Fotólisis
4.
Environ Sci Process Impacts ; 20(3): 513-522, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29393327

RESUMEN

The ubiquity of sulfonamides (SAs) in natural waters requires insight into their environmental fate for ecological risk assessment. Extensive studies focused on the effect of univariate water constituents on the photochemical fate of SAs, yet the multivariate effects of water constituents in environmentally relevant concentrations on SA photodegradation are poorly understood. Here, response surface methodology was employed to explore the integrative effects of main water constituents (dissolved organic matter (DOM), NO3-, HCO3-, Cu2+) on the photodegradation of a representative SA (sulfamethazine). Results showed that besides single factors, interaction of factors also significantly impacted the photodegradation. Radical scavenging experiments indicated that triplet-excited DOM (3DOM*) was responsible for the enhancing effect of DOM on the photodegradation. Additionally, DOM may also quench the 3DOM*-mediated oxidation intermediate of sulfamethazine causing the inhibiting effect of DOM-DOM interaction. We also found that HCO3- was oxidized by triplet-excited sulfamethazine producing CO3˙-, and the high reactivity of CO3˙- with sulfamethazine (second-order rate constant 2.2 × 108 M-1 s-1) determined by laser flash photolysis revealed the enhancing photodegradation mechanism of HCO3-. This study is among the first attempts to probe the photodegradation of SAs considering the integrative effects of water constituents, which is important in accurate ecological risk assessment of organic pollutants in the aquatic environment.


Asunto(s)
Sustancias Húmicas/análisis , Fotólisis , Sulfametazina/química , Contaminantes Químicos del Agua/química , Luz , Oxidación-Reducción , Fotoquímica , Sulfametazina/efectos de la radiación , Contaminantes Químicos del Agua/efectos de la radiación
5.
J Hazard Mater ; 353: 26-34, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29631044

RESUMEN

Readily-available and efficient catalyst is essential for activating oxidants to produce reactive species for deeply remediating water bodies contaminated by antibiotics. In this study, Ferrocene (Fc) was introduced to establish a heterogeneous photo-Fenton system for the degradation of sulfonamide antibiotics, taking sulfamethoxazole as a representative. Results showed that the removal of sulfamethoxazole was effective in Fc-catalyzed photo-Fenton system. Electron spin resonance and radical scavenging experiments verified that there was a photoindued electron transfer process from Fc to H2O2 and dissolved oxygen resulting in the formation of OH that was primarily responsible for the degradation of sulfamethoxazole. The reactions of OH with substructure model compounds of sulfamethoxazole unveiled that aniline moiety was the preferable reaction site of sulfamethoxazole, which was verified by the formation of hydroxylated product and the dimer of sulfamethoxazole in Fc-catalyzed photo-Fenton system. This heterogeneous photo-Fenton system displayed an effective degradation efficiency even in a complex water matrices, and Fc represented a long-term stability by using the catalyst for multiple cycles. These results demonstrate that Fc-catalyzed photo-Fenton oxidation may be an efficient approach for remediation of wastewater containing antibiotics.


Asunto(s)
Antibacterianos/química , Compuestos Ferrosos/química , Peróxido de Hidrógeno/química , Metalocenos/química , Sulfametoxazol/química , Contaminantes Químicos del Agua/química , Catálisis , Compuestos Ferrosos/efectos de la radiación , Peróxido de Hidrógeno/efectos de la radiación , Metalocenos/efectos de la radiación , Fotólisis , Luz Solar , Purificación del Agua/métodos
6.
Huan Jing Ke Xue ; 39(11): 5043-5050, 2018 Nov 08.
Artículo en Zh | MEDLINE | ID: mdl-30628227

RESUMEN

Antibiotics are acknowledged micropollutants in wastewaters and surface waters. They are of particular concern because they can trigger an increase in resistant bacteria. Therefore, novel and efficient technology for the removal of antibiotics is urgently needed. In this study, heterogeneous Fenton-like reaction based on ferrocene (Fc) had been constructed, sulfamethazine (SMZ) was selected as target compound due to its abundance in water. The degradation kinetics, transformation pathway, and degradation products of SMZ in this system were investigated. The results showed that Fc+H2O2+UV had better degradation efficiency for SMZ than did Fc, Fc+UV, H2O2, and H2O2+UV, Fc+H2O2 systems. Radical scavenger experiments confirmed that the photogenerated OH was largely responsible for the photolytic enhancement of SMZ in the Fc+H2O2+UV system. Additionally, the electron spin resonance technique revealed that photogenerated O2- was found in the system, indicating that Fc can generate electrons under light conditions. H2O2 underwent electron disproportionation to produce OH, which promoted the degradation of SMZ. The degradation products of SMZ in the Fc+H2O2+UV system were identified by LC/LTQ-Orbitrap MS. The hydroxylation of SMZ, the removal of SO2, and the products of breaking C-S, S-N, and N-C bonds were observed. Common soluble components (such as DOM, Cl-, and Br-) in water can quench OH, thus inhibiting the photodegradation of SMZ. However, the ionic strength had no significant effect on the degradation of SMZ in the Fc+H2O2+UV system, which showed that this technique positively affected the treatment of wastewater containing high-salinity antibiotics.


Asunto(s)
Metalocenos/química , Sulfametazina/química , Rayos Ultravioleta , Contaminantes Químicos del Agua/química , Catálisis , Peróxido de Hidrógeno , Oxidación-Reducción , Aguas Residuales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA