Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Chem Biol ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965383

RESUMEN

Targeted protein degradation (TPD) represents a potent chemical biology paradigm that leverages the cellular degradation machinery to pharmacologically eliminate specific proteins of interest. Although multiple E3 ligases have been discovered to facilitate TPD, there exists a compelling requirement to diversify the pool of E3 ligases available for such applications. Here we describe a clustered regularly interspaced short palindromic repeats (CRISPR)-based transcriptional activation screen focused on human E3 ligases, with the goal of identifying E3 ligases that can facilitate heterobifunctional compound-mediated target degradation. Through this approach, we identified a candidate proteolysis-targeting chimera (PROTAC), 22-SLF, that induces the degradation of FK506-binding protein 12 when the transcription of FBXO22 gene is activated. Subsequent mechanistic investigations revealed that 22-SLF interacts with C227 and/or C228 in F-box protein 22 (FBXO22) to achieve target degradation. Lastly, we demonstrated the versatility of FBXO22-based PROTACs by effectively degrading additional endogenous proteins, including bromodomain-containing protein 4 and the echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase fusion protein.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38334269

RESUMEN

A novel Gram-positive strain WQ 127069T that was isolated from the soil of Baima Snow Mountain, a habitat of highly endangered Yunnan snub-nosed monkeys (Rhinopithecus bieti), was subjected to a polyphasic taxonomic study. Phylogenetic analysis based on the 16S rRNA gene sequences showed that the isolate belongs to the genus Paenibacillus, showing 98.4 and 96.08 % sequence similarity to the type strains Paenibacillus periandrae PM10T and Paenibacillus foliorum LMG 31456T, respectively. The G+C content of the genomic DNA of strain WQ127069T was 45.6 mol%. The predominant isoprenoid quinone was MK-7, and meso-diaminopimelic acid was present in peptidoglycan. The major cellular fatty acids were antiiso-C15 : 0, iso-C15 : 0 and C16 : 0. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylmonomethylethanolamine. The whole genome average nucleotide identity and digital DNA-DNA hybridization values between strain WQ 127069T and strain PM10T were 93.2 and 52.5 %, respectively. Growth occurred at 5-40 °C (optimally at 20-35 °C), pH 6-8 (optimally at pH7.0) and with 0.5-2 % (w/v) NaCl (optimally at 0.5 %). On the basis of the taxonomic evidence, a novel species, Paenibacillus baimaensis sp. nov., is proposed. The type strain is WQ 127069T (=KCTC 43480T=CCTCC AB 2022381T).


Asunto(s)
Paenibacillus , Presbytini , Animales , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Suelo , ADN Bacteriano/genética , Composición de Base , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , China , Ecosistema
3.
Bioorg Chem ; 144: 107132, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38241768

RESUMEN

The pleiotropic effects of TGR5 make it an appealing target for intervention of metabolic and inflammatory disorders, but systemic activation of TGR5 faces challenges of on-target side effects, especially gallbladder filling. Gut-restricted agonists were proved to be sufficient to circumvent these side effects, but extremely low systemic exposure may not be effective in activating TGR5 since it is located on the basolateral membrane. Herein, to balance potency and physicochemical properties, a series of gut-restricted TGR5 agonists with diversified kinetophores had been designed and synthesized. Compound 22-Na exhibited significant antidiabetic effect, and showed favorable gallbladder safety after 7 days of oral administration in humanized TGR5H88Y mice, confirming that gut-restricted agonism of TGR5 is a viable strategy to alleviate systemic target-related effects.


Asunto(s)
Ácido Betulínico , Receptores Acoplados a Proteínas G , Ratones , Animales , Receptores Acoplados a Proteínas G/metabolismo , Hipoglucemiantes/farmacología , Vesícula Biliar/metabolismo
4.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38396927

RESUMEN

Melatonin, a pleiotropic small molecule, is employed in horticultural crops to delay senescence and preserve postharvest quality. In this study, 100 µM melatonin treatment delayed a decline in the color difference index h* and a*, maintaining the content of chlorophyll and carotenoids, thereby delaying the yellowing and senescence of Chinese kale. Transcriptome analysis unequivocally validates melatonin's efficacy in delaying leaf senescence in postharvest Chinese kale stored at 20 °C. Following a three-day storage period, the melatonin treatment group exhibited 1637 differentially expressed genes (DEGs) compared to the control group. DEG analysis elucidated that melatonin-induced antisenescence primarily governs phenylpropanoid biosynthesis, lipid metabolism, plant signal transduction, and calcium signal transduction. Melatonin treatment up-regulated core enzyme genes associated with general phenylpropanoid biosynthesis, flavonoid biosynthesis, and the α-linolenic acid biosynthesis pathway. It influenced the redirection of lignin metabolic flux, suppressed jasmonic acid and abscisic acid signal transduction, and concurrently stimulated auxin signal transduction. Additionally, melatonin treatment down-regulated RBOH expression and up-regulated genes encoding CaM, thereby influencing calcium signal transduction. This study underscores melatonin as a promising approach for delaying leaf senescence and provides insights into the mechanism of melatonin-mediated antisenescence in postharvest Chinese kale.


Asunto(s)
Brassica , Melatonina , Humanos , Brassica/genética , Brassica/metabolismo , Melatonina/farmacología , Melatonina/metabolismo , Senescencia de la Planta , Calcio/metabolismo , Retraso del Tratamiento , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Transcriptoma
5.
Sci Total Environ ; 919: 170843, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38340821

RESUMEN

Machine learning has been increasingly used to retrieve chlorophyll-a (Chl-a) in optically variable waters. However, without the guidance of physical principles or expert knowledge, machine learning may produce biased mapping relationships, or waste considerable time searching for physically infeasible hyperparameter domains. In addition, most Chl-a retrieval models cannot evaluate retrieval uncertainty when ground observations are not available, and the retrieval uncertainty is crucial for understanding the model limitations and evaluating the reliability of retrieval results. In this study, we developed a novel knowledge-guided mixture density network to retrieve Chl-a in optically variable inland waters based on Sentinel-3 Ocean and Land Color Instrument (OLCI) imagery. The proposed method embedded prior knowledge derived from spectral shape classification into the mixture density network. Compared to another deterministic model, the knowledge-guided mixture density network outputted the conditional distribution of Chl-a given an input spectrum, enabling us to estimate the optimal retrieval and the associated uncertainty. The proposed method showed favorable correspondence with the field Chl-a, with root mean square error (RMSE) of 6.56 µg/L, and mean absolute percentage error (MAPE) of 43.64 %. Calibrated against Sentinel-3 OLCI spectrum, the proposed method also performed well when applied to field spectrum (RMSE = 4.58 µg/L, MAPE = 72.70 %), suggesting its effectiveness and good generalization. The proposed method provided the standard deviation of each estimated Chl-a, which enabled us to inspect the reliability of the estimated results and understand the model limitations. Overall, the proposed method improved the Chl-a retrieval in terms of model accuracy and uncertainty evaluation, providing a more comprehensive Chl-a observation of inland waters.

6.
Front Microbiol ; 15: 1356176, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741742

RESUMEN

Background: Imbalance in intestinal microbiota caused by microbial species and proportions or metabolites derived from microbes are associated with hypertension, as well as diabetic nephropathy. However, the involvement of the intestinal microbiota and metabolites in hypertension and diabetic nephropathy comorbidities (HDN) remains to be elucidated. Methods: We investigated the effects of intestinal microbiota on HDN in a rat model and determined the abundance of the intestinal microbiota using 16S rRNA sequencing. Changes in fecal and serum metabolites were analyzed using ultra-high-performance liquid chromatography-mass spectrometry. Results: The results showed abundance of Proteobacteria and Verrucomicrobia was substantially higher, whereas that of Bacteroidetes was significant lower in the HDN group than in the sham group. Akkermansia, Bacteroides, Blautia, Turicibacter, Lactobacillus, Romboutsia, and Fusicatenibacter were the most abundant, and Prevotella, Lachnospiraceae_NK4A136_group, and Prevotella_9 were the least abundant in the HDN group. Further analysis with bile acid metabolites in serum showed that Blautia was negatively correlated with taurochenodeoxycholic acid, taurocholic acid, positively correlated with cholic acid and glycocholic acid in serum. Conclusions: These findings suggest that the gut microbiota and metabolites in feces and serum substantially differed between the HDN and sham groups. The F/B ratio was higher in the HDN group than in the sham group. Blautia is potentially associated with HDN that correlated with differentially expressed bile acid metabolites, which might regulate the pathogenesis of HDN via the microorganism-gut-metabolite axis.

7.
J Hepatocell Carcinoma ; 11: 1031-1048, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38859944

RESUMEN

Background: Layilin (LAYN) represents a valuable prognostic biomarker across various tumor types, while also serving as an innovative indicator of dysfunctional or exhausted CD8+ T cells and exhibiting correlation with immune context. However, the immune function and prognostic significance of LAYN in hepatocellular carcinoma (HCC) remain unexplored. Therefore, our objective is to investigate the role of LAYN in CD8+ T cell exhaustion, clinical prognosis, and the tumor microenvironment within HCC. Methods: TIMER or GEPIA databases were used to analyze LAYN expression level and its correlation with immune infiltration in HCC. Bioinformatics analysis was conducted on TCGA and scRNA-seq cohorts. The evaluation of LAYN expression level in fresh specimens was performed through IF, IHC, and ELISA assays. Flow cytometry and mRNA-seq were employed to investigate co-expressed genes of LAYN, the LAYN+CD8+ T cell exhaustion signature and immune function. Cell proliferation ability and killing activity were assessed using CCK8 and CFSE/PI. Results: The expression level of LAYN in HCC tumors was significantly higher compared to peri-tumors. Patients with high levels of LAYN exhibited poorer OS. GO or KEGG analysis confirmed that LAYN was involved in immune response and was positively associated with CD8+ T cell immune infiltration levels. Furthermore, LAYN negatively regulated the immune function of CD8+ T cells, leading to dysfunctional phenotypes characterized by elevated levels of CD39, TIM3 and reduced levels of perforin, TNF-α, Ki-67. CFSE/PI assays demonstrated that LAYN+CD8+ T cells displayed decreased cytotoxic activity. Additionally, there was a positive correlation between LAYN and CD146 levels, which are involved in adhesion and localization processes of CD8+ T cells. Interestingly, blocking LAYN partially restored the exhaustion properties of CD8+ T cells. Conclusion: LAYN exhibits a strong correlation with immune infiltration in the TME and represents a novel biomarker for predicting clinical prognosis in HCC. Moreover, targeting LAYN may hold promise as an effective strategy for HCC immunotherapy.

8.
PLoS One ; 19(5): e0302651, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743758

RESUMEN

Since the COVID-19, cough sounds have been widely used for screening purposes. Intelligent analysis techniques have proven to be effective in detecting respiratory diseases. In 2021, there were up to 10 million TB-infected patients worldwide, with an annual growth rate of 4.5%. Most of the patients were from economically underdeveloped regions and countries. The PPD test, a common screening method in the community, has a sensitivity of as low as 77%. Although IGRA and Xpert MTB/RIF offer high specificity and sensitivity, their cost makes them less accessible. In this study, we proposed a feature fusion model-based cough sound classification method for primary TB screening in communities. Data were collected from hospitals using smart phones, including 230 cough sounds from 70 patients with TB and 226 cough sounds from 74 healthy subjects. We employed Bi-LSTM and Bi-GRU recurrent neural networks to analyze five traditional feature sets including the Mel frequency cepstrum coefficient (MFCC), zero-crossing rate (ZCR), short-time energy, root mean square, and chroma_cens. The incorporation of features extracted from the speech spectrogram by 2D convolution training into the Bi-LSTM model enhanced the classification results. With traditional futures, the best TB patient detection result was achieved with the Bi-LSTM model, with 93.99% accuracy, 93.93% specificity, and 92.39% sensitivity. When combined with a speech spectrogram, the classification results showed 96.33% accuracy, 94.99% specificity, and 98.13% sensitivity. Our findings underscore that traditional features and deep features have good complementarity when fused using Bi LSTM modelling, which outperforms existing PPD detection methods in terms of both efficiency and accuracy.


Asunto(s)
Tos , Redes Neurales de la Computación , Tuberculosis Pulmonar , Humanos , Tos/diagnóstico , Tuberculosis Pulmonar/diagnóstico , Masculino , Femenino , Adulto , Persona de Mediana Edad , COVID-19/diagnóstico , Anciano , Sensibilidad y Especificidad
9.
Hortic Res ; 11(6): uhae104, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38883328

RESUMEN

Brassinazole resistant 1 (BZR1), a brassinosteroid (BR) signaling component, plays a pivotal role in regulating numerous specific developmental processes. Our study demonstrated that exogenous treatment with 2,4-epibrassinolide (EBR) significantly enhanced the accumulation of carotenoids and chlorophylls in Chinese kale (Brassica oleracea var. alboglabra). The underlying mechanism was deciphered through yeast one-hybrid (Y1H) and dual-luciferase (LUC) assays, whereby BoaBZR1.1 directly interacts with the promoters of BoaCRTISO and BoaPSY2, activating their expression. This effect was further validated through overexpression of BoaBZR1.1 in Chinese kale calli and plants, both of which exhibited increased carotenoid accumulation. Additionally, qPCR analysis unveiled upregulation of carotenoid and chlorophyll biosynthetic genes in the T1 generation of BoaBZR1.1-overexpressing plants. These findings underscored the significance of BoaBZR1.1-mediated BR signaling in regulating carotenoid accumulation in Chinese kale and suggested the potential for enhancing the nutritional quality of Chinese kale through genetic engineering of BoaBZR1.1.

10.
Electron. j. biotechnol ; 15(5): 10-10, Sept. 2012. ilus, tab
Artículo en Inglés | LILACS | ID: lil-657669

RESUMEN

Background: The dried sclerotium of medicinal fungus Polyporus umbellatus (Pers.) Fries has many pharmacological functions such as diuretic and anticancer activity, in which high-content polysaccharides may play an important role. However, RNA isolation is difficult in filamentous fungi and lacking in P. umbellatus. Results: Five methods for RNA extraction from five strains collected from four provinces were assessed for their ability to recover a high-quality RNA applicable for sequence-related amplification polymorphism (SRAP) PCR and GDP-D-mannose pyrophosphorylase (GMP) gene expression profiles. Both A260/A280 and A260/A230 ratios of the best Trizol Plus + RNAiso-mate for Plant Tissue method are around 2 with a yield of 1122.00 +/- 0.21 ng ul-1. The Trizol method also showed good quality with the yield 469.60 ng ul-1. The SRAP PCR amplified clear and polymorphic bands in all five cDNA samples transcribed from RNA by using primer Me4-Em4. GMP gene fragment (1251 bp) was successfully amplified by RT-PCR, suggesting the integrity of isolated RNA. Conclusion: All these results showed that the total RNA isolated by this protocol is of sufficient quality for subsequent molecular applications.


Asunto(s)
ARN de Hongos/aislamiento & purificación , Polyporus/genética , Polyporus/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA