Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-36780394

RESUMEN

The low specific capacity and Mg non-affinity of graphite limit the energy density of ion rechargeable batteries. Here, we first identify that the monolayer C12-3-3 in sp2-sp3 carbon hybridization with high Li/Mg affinity is an appropriate anode material for Li-ion batteries and Mg-ion batteries via the first-principles simulations. The monolayer C12-3-3 can achieve high specific capacities of 1181 mAh/g for Li and 739 mAh/g for Mg, higher than those of most previous anodes. The Li storage reaction is an "adsorption-conversion-intercalation mechanism", while the Mg storage reaction is an "adsorption mechanism". The 2D carbon material of C12-3-3 displays fast diffusion kinetics with low diffusion barriers of 0.41 eV for Li and 0.21 eV for Mg. As a new carbon-based anode material, the monolayer C12-3-3 will promote the practical application of batteries with high-capacity and high-rate performance.

2.
Materials (Basel) ; 15(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36556686

RESUMEN

In this work, we reported an unusual phenomenon of strain neutral layer (SNL) spreading in an as-rolled AZ31B magnesium alloy sheet during V-bending. The SNL on the middle symmetrical surface perpendicular to the transverse direction (TD) of the sheet extended to the compression region and was accompanied by a mound-like feature. However, the SNL on the side surface perpendicular to the TD was distributed with a parallel band feature. The underlying mechanism was revealed by the finite element (FE) analysis. The results indicate that the three-dimensional compressive stresses in the compression region of the bending samples were responsible for the above phenomenon. Moreover, the area of the SNL in the middle position gradually decreased as the bending test progressed. The findings in this study provide some new insights into the bending deformation behavior of magnesium alloy.

3.
Materials (Basel) ; 13(3)2020 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-31991923

RESUMEN

Effects of different Y contents (0, 0.3, 0.7, 1.5, 3, 5 and 10 wt.%) on the microstructure, thermal stability and mechanical properties of Mg-3Zn-1Mn (ZM31) alloys were systematically studied. The existence form and action mechanism of Y in the experimental alloys were investigated. The results revealed that with the change of Y content, the main phases of the ZM31-xY alloys changed from Mg7Zn3 phase, I-phase, I + W-phase, W-phase, W + LPSO phase to LPSO phase. When Y content was low (≤1.5%), hot extrusion could break up the residual phases after homogenization to form dispersed fine rare-earth phase particles, and fine second phases would also precipitate in the grain, which could inhibit the grain growth. When Y content was high (≥3%), the experimental alloys were only suitable for high-temperature extrusion due to the formation of the high heat stable rare-earth LPSO phase. In addition, Y could evidently enhance the mechanical properties of the as-extruded ZM31 alloy, of which the ZM31-10Y alloy had the best mechanical properties, that is, the tensile and yield strengths are 403 MPa and 342 MPa. The high strengths of the alloys were mainly determined by fine grain strengthening, rare-earth phase strengthening and dispersion strengthening of fine α-Mn particles.

4.
Nanomaterials (Basel) ; 8(7)2018 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-29986490

RESUMEN

Nano-modification is a prospective method for improving the electrical properties of transformer oil. In most situations, transformer oil combined with cellulose paper is used to construct an insulation system for power equipment, such as power transformers. However, the influence of nanoparticles on the electrical performance of oil-impregnated paper is still unclear. Therefore, in this paper, we identify the failure characteristics of both fresh and nano-modified oil/paper. Specifically, the accumulative failure characteristics of nano-oil-impregnated paper (NOIP) are experimentally determined. The space charge distribution and trap characteristics of fresh paper and NOIP were measured, and the effect of nanoparticles on the space charge behavior are then analyzed. Finally, we measure the microstructure of fresh paper and NOIP subjected to repeated impulses. The test results indicate that nano-titanium oxide (TiO2) particles have a limited effect on the breakdown voltage of NOIP. However, the particles can dramatically improve the resistant ability of NOIP against repeated impulses. For the NOIP with a nano-concentration of 0.25 g/L, the improvement reaches 62.5% compared with fresh paper. Under repeated applications of impulse voltages, the space charge density of NOIP is much lower than that of fresh paper. The deep trap density of NOIP is much higher than that of fresh OIP, whereas shallow trap density is relatively lower. Micropores are generated in paper insulation subjected to repeated impulses. The amount of the generated micropores in NOIP is lower than that in fresh paper. Nano-TiO2 particles suppress the accumulation of space charge in the oil paper insulation, which weakens the electric field distortion in the dielectric. However, nanoparticles reduce the accumulative damage caused by repeated impulses. The above two points are considered the main reasons to improve the resistant ability against repeated impulses.

5.
Materials (Basel) ; 10(11)2017 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-29113116

RESUMEN

Knowledge of statistical characteristics of mechanical properties is very important for the practical application of structural materials. Unfortunately, the scatter characteristics of magnesium alloys for mechanical performance remain poorly understood until now. In this study, the mechanical reliability of magnesium alloys is systematically estimated using Weibull statistical analysis. Interestingly, the Weibull modulus, m, of strength for magnesium alloys is as high as that for aluminum and steels, confirming the very high reliability of magnesium alloys. The high predictability in the tensile strength of magnesium alloys represents the capability of preventing catastrophic premature failure during service, which is essential for safety and reliability assessment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA