Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Xray Sci Technol ; 32(3): 583-596, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38306089

RESUMEN

PURPOSE: The explore the added value of peri-calcification regions on contrast-enhanced mammography (CEM) in the differential diagnosis of breast lesions presenting as only calcification on routine mammogram. METHODS: Patients who underwent CEM because of suspicious calcification-only lesions were included. The test set included patients between March 2017 and March 2019, while the validation set was collected between April 2019 and October 2019. The calcifications were automatically detected and grouped by a machine learning-based computer-aided system. In addition to extracting radiomic features on both low-energy (LE) and recombined (RC) images from the calcification areas, the peri-calcification regions, which is generated by extending the annotation margin radially with gradients from 1 mm to 9 mm, were attempted. Machine learning (ML) models were built to classify calcifications into malignant and benign groups. The diagnostic matrices were also evaluated by combing ML models with subjective reading. RESULTS: Models for LE (significant features: wavelet-LLL_glcm_Imc2_MLO; wavelet-HLL_firstorder_Entropy_MLO; wavelet-LHH_glcm_DifferenceVariance_CC; wavelet-HLL_glcm_SumEntropy_MLO;wavelet-HLH_glrlm_ShortRunLowGray LevelEmphasis_MLO; original_firstorder_Entropy_MLO; original_shape_Elongation_MLO) and RC (significant features: wavelet-HLH_glszm_GrayLevelNonUniformityNormalized_MLO; wavelet-LLH_firstorder_10Percentile_CC; original_firstorder_Maximum_MLO; wavelet-HHH_glcm_Autocorrelation_MLO; original_shape_Elongation_MLO; wavelet-LHL_glszm_GrayLevelNonUniformityNormalized_MLO; wavelet-LLH_firstorder_RootMeanSquared_MLO) images were set up with 7 features. Areas under the curve (AUCs) of RC models are significantly better than those of LE models with compact and expanded boundary (RC v.s. LE, compact: 0.81 v.s. 0.73, p < 0.05; expanded: 0.89 v.s. 0.81, p < 0.05) and RC models with 3 mm boundary extension yielded the best performance compared to those with other sizes (AUC = 0.89). Combining with radiologists' reading, the 3mm-boundary RC model achieved a sensitivity of 0.871 and negative predictive value of 0.937 with similar accuracy of 0.843 in predicting malignancy. CONCLUSIONS: The machine learning model integrating intra- and peri-calcification regions on CEM has the potential to aid radiologists' performance in predicting malignancy of suspicious breast calcifications.


Asunto(s)
Neoplasias de la Mama , Mama , Calcinosis , Medios de Contraste , Aprendizaje Automático , Mamografía , Humanos , Mamografía/métodos , Femenino , Calcinosis/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Persona de Mediana Edad , Diagnóstico Diferencial , Mama/diagnóstico por imagen , Adulto , Anciano , Interpretación de Imagen Radiográfica Asistida por Computador/métodos
2.
Clin Breast Cancer ; 21(3): 256-262.e2, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33243676

RESUMEN

BACKGROUND: Contrast-enhanced mammography (CEM) is a novel breast imaging technique that can provide additional information of breast tissue blood supply. This study aimed to test the possibility of CEM in improving the diagnostic accuracy of Breast Imaging Reporting and Data System (BI-RADS) 4 calcification-only lesions with consideration of morphology and distribution. PATIENTS AND METHODS: Data of patients with suspicious malignant calcification-only lesions (BI-RADS 4) on low-energy CEM and proved pathologic diagnoses were retrospectively collected. Two junior radiologists independently reviewed the two sets of CEM images, low-energy images (LE) to describe the calcifications by morphology and distribution type, and recombined images (CE) to record the presence of enhancement. Low-risk and high-risk groups were divided by calcification morphology, distribution, and both, respectively. Positive predictive values and misdiagnosis rates (MDR) were compared between LE-only reading and CE reading. Diagnostic performance was also tested using machine learning method. RESULTS: The study included 74 lesions (26 malignant and 48 benign). Positive predictive values were significantly higher and MDRs were significantly lower using CE images than using LE alone for both the low-risk morphology type and low-risk distribution type (P < .05). MDRs were significantly lower when using CE images (18.18%-24.00%) than using LE images alone in low-risk group (76.36%-80.00%) (P < .05). Using a machine learning method, significant improvements in the area under the receiver operating characteristic curve were observed in both low-risk and high-risk groups. CONCLUSION: CEM has the potential to aid in the diagnosis of BI-RADS 4 calcification-only lesions; in particular, those presented as low risk in morphology and/or distribution may benefit more.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Calcinosis/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Mamografía/métodos , Adulto , Anciano , Enfermedades de la Mama/diagnóstico por imagen , Calcinosis/patología , Medios de Contraste , Femenino , Humanos , Persona de Mediana Edad , Intensificación de Imagen Radiográfica , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA