Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Phytother Res ; 37(1): 15-34, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36054406

RESUMEN

The correlation of bile acid (BA) metabolism disorder with the pathogenesis of ulcerative colitis (UC) is realized nowadays. Farnesoid X receptor (FXR), a controller for BA homeostasis and inflammation, is a promising target for UC therapy. Nigakinone has potential therapeutic effects on colitis. Herein, we investigated the anti-UC effects and mechanism of nigakinone in colitic animals induced by dextran sulfate sodium (DSS). The related targets involved in the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing 3 (NLRP3) signaling pathway were measured. BA-targeted metabolomics was employed to reveal the regulatory effects of nigakinone on BA profile in colitis, while expressions of FXR and its mediated targets referring to BA enterohepatic circulation were determined. The critical role of FXR in the treatment of nigakinone for colitis was studied via molecule-docking, dual-luciferase reporter® (DLR™) assays, FXR silencing cells, and FXR knockout mice. Results showed nigakinone attenuated DSS-induced colitis symptoms, including excessive inflammatory response by NLRP3 activation, and injury of the intestinal mucosal barrier. Nigakinone regulated BA disorders by controlling cholesterol hydroxylase and transporters mediated by FXR, then decreased BA accumulation in colon. Molecular-docking and DLR™ assays indicated FXR might be a target of nigakinone. In vitro, nigakinone restrained BA-induced inflammation and cell damage via FXR activation and inhibition of inflammatory cytokines. However, ameliorating effects of nigakinone on colitis were suppressed by FXR knockout or silencing in vivo or in vitro. Taken together, nigakinone ameliorated experimental colitis via regulating BA profile and FXR/NLRP3 signaling pathway.


Asunto(s)
Colitis Ulcerosa , Colitis , Animales , Ratones , Ácidos y Sales Biliares , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colon , Modelos Animales de Enfermedad , Inflamación/metabolismo , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transducción de Señal/fisiología
2.
Chemistry ; 28(53): e202200374, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-35768335

RESUMEN

We have developed a Keggin polyoxometalate (POM)-based ionic-liquid (IL)-immobilizing rhodium single-atom Rh catalyst (MTOA)5 [SiW11 O39 Rh] (MOTA=methyltrioctylammonium cation) that can afford exceptionally high catalytic activity for the hydroformylation of alkenes to produce aldehydes at an ultralow loading of Rh (ca. 3 ppm). For styrene hydroformylation, both the conversion and the yield of the aldehyde can reach almost 99 %, and a TOF as high as 9000 h-1 was obtained without using any phosphine ligand in the reaction process. Further characterization by FTIR, ICP and ESI-MS analysis revealed that the single Rh atom was incorporated in the lacunary POM anions. In particular, the bulky IL cation can play an additional role in stabilizing Rh species and thus prevent aggregation and leaching of Rh species. The IL catalyst was miscible with n-hexane at temperatures; this contributed to exceptionally high activity for hydroformylation even at ultra-low loading of IL catalyst.

3.
Acta Pharmacol Sin ; 43(7): 1843-1856, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34845369

RESUMEN

Ras has long been viewed as a promising target for cancer therapy. Farnesylthiosalicylic acid (FTS), as the only Ras inhibitor has ever entered phase II clinical trials, has yielded disappointing results due to its strong hydrophobicity, poor tumor-targeting capacity, and low therapeutic efficiency. Thus, enhancing hydrophilicity and tumor-targeting capacity of FTS for improving its therapeutic efficacy is of great significance. In this study we conjugated FTS with a cancer-targeting small molecule dye IR783 and characterized the anticancer properties of the conjugate FTS-IR783. We showed that IR783 conjugation greatly improved the hydrophilicity, tumor-targeting and therapeutic potential of FTS. After a single oral administration in Balb/c mice, the relative bioavailability of FTS-IR783 was increased by 90.7% compared with FTS. We demonstrated that organic anion transporting polypeptide (OATP) and endocytosis synergistically drove the uptake of the FTS-IR783 conjugate in breast cancer MDA-MB-231 cells, resulting in superior tumor-targeting ability of the conjugate both in vitro and in vivo. We further revealed that FTS-IR783 conjugate could bind with and directly activate AMPK rather than affecting Ras, and subsequently regulate the TSC2/mTOR signaling pathway, thus achieving 2-10-fold increased anti-cancer therapeutic efficacy against 6 human breast cancer cell lines compared to FTS both in vivo and in vitro. Overall, our data highlights a promising approach for the modification of the anti-tumor drug FTS using IR783 and makes it possible to return FTS back to the clinic with a better efficacy.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Farnesol/análogos & derivados , Farnesol/farmacología , Farnesol/uso terapéutico , Femenino , Humanos , Ratones , Salicilatos , Proteínas ras/metabolismo , Proteínas ras/uso terapéutico
4.
J Environ Manage ; 307: 114491, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35104701

RESUMEN

Parameters monitoring is essential to maintain the stability and efficiency of the wastewater treatment process, which has spurred ubiquitous installation of sensors in wastewater treatment plants (WWTPs). As the rich process data of WWTPs is not effectively transformed into actionable knowledge for system optimization due to improper sensor installation, the sensor placement scheme needs to be optimized. In this paper, a weighted sensor placement optimization model based on sensor cost, information richness and reliability is established to transform the sensor optimization problem to a nonlinear mathematical programming problem. Then a discrete multi-objective state transition algorithm is proposed to find the Pareto optimal solutions. Finally, an evaluation strategy is designed to select the most suitable solution for industrial application. The results of simulation experiments on three different WWTPs demonstrate the validity and superiority of the proposed method, increasing the degree of variable observability and measurement redundancy while keeping the sensor cost at a low level.


Asunto(s)
Purificación del Agua , Algoritmos , Simulación por Computador , Reproducibilidad de los Resultados
5.
J Environ Manage ; 310: 114724, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35192983

RESUMEN

With the increasingly stringent environmental protection policies of various countries, the contradiction between the treatment cost and the purification degree of environmental pollutants has become increasingly significant, which has become a major factor restricting the efficient operation of wastewater treatment plants. Hence, keeping the ion concentration at the outlet as low as possible while reducing the cost are the main objectives of treating heavy metal wastewater by electrocoagulation (EC) process. However, due to the complicated mechanism and uncertain production conditions, it is difficult to achieve those goals by manually setting the current through operators' experience. In this paper, we develop a dynamic multi-objective optimization strategy for EC process to balance these two conflicting production targets. First, we define the removal efficiency (RE) to measure the effectiveness of the EC process. Due to the anodic passivation and cathodic polarization in the EC process, the current reversing period (CRP) is proposed and optimized to ensure the stable performance of the electrodes. Then the current setting problem is formulated as a constrained multi-objective optimization problem with competing objectives of RE and cost. An interval-adjustable control parameterization (CP) approach is developed to reduce the complexity of this optimization problem. To compute this optimization problem, a heuristic method named multi-objective state transition algorithm (MOSTA) with evaluation value is investigated. The effectiveness of our model and optimization strategy is demonstrated by a successful implementation in an EC process of a wastewater treatment plant in Chenzhou, China.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Purificación del Agua , Electrocoagulación/métodos , Electrodos , Eliminación de Residuos Líquidos/métodos , Aguas Residuales
6.
Can J Physiol Pharmacol ; 98(6): 357-365, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31846359

RESUMEN

Inflammation is a common inducer of numerous severe diseases such as sepsis. The NF-κB signaling pathway plays a key role in the inflammatory process. Its activation promotes the release of pro-inflammatory mediators like inducible nitric oxide synthase and tumor necrosis factor alpha. Peroxisome proliferator-activated receptor gamma (PPAR-γ) inactivates nuclear factor kappa B (NF-κB) and subsequently attenuates inflammation. Rhein, an agent isolated from rhubarb, has been known to have anti-inflammatory effects. However, its influence on PPAR-γ remains largely unknown. In this study, an inflammation model was constructed by stimulating RAW264.7 cells with lipopolysaccharide. Rhein was used as a therapeutic agent, while rosiglitazone (PPAR-γ activator) and GW9662 (PPAR-γ inhibitor) were used as disrupters for in depth studies. The results demonstrated that rhein inhibits NF-κB activation and inflammatory factor release. However, GW9662 significantly reduced this effect, indicating that PPAR-γ is a critical mediator in the rhein-mediated anti-inflammatory process. Additionally, positive modulation of PPAR-γ expression and activity by rosiglitazone correspondingly influenced the effects of rhein on inflammatory factors and NF-κB expression. We also found that rhein could enhance PPAR-γ, NF-κB, and histone deacetylase 3 (HDAC3) binding. These results indicate that rhein exerts its anti-inflammation function by regulating the PPAR-γ-NF-κB-HDAC3 axis.


Asunto(s)
Antraquinonas/farmacología , Antiinflamatorios/farmacología , Lipopolisacáridos/farmacología , FN-kappa B/antagonistas & inhibidores , PPAR gamma/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Antraquinonas/uso terapéutico , Antiinflamatorios/uso terapéutico , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Ratones , Células RAW 264.7
7.
J Cell Physiol ; 234(4): 4277-4290, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30146689

RESUMEN

Accumulating evidence suggests that caveolin-1 (CAV-1) is a stress-related oncotarget and closely correlated to chemoresistance. Targeting CAV-1 might be a promising strategy to improve chemosensitivity for breast cancer treatment. Astragaloside IV (AS-IV), a bioactive compound purified from Astragalus membranaceus, has been shown to exhibit multiple bioactivities, including anticancer. However, the involved molecular targets are still ambiguous. In this study, we investigated the critical role of CAV-1 in mediating the chemosensitizing effects of AS-IV to Taxol on breast cancer. We found that AS-IV could enhance the chemosensitivity of Taxol with minimal direct cytotoxicity on breast cancer cell lines MCF-7 and MDA-MB-231, as well as the nontumor mammary epithelial cell line MCF-10A. AS-IV was further demonstrated to aggravate Taxol-induced apoptosis and G2/M checkpoint arrest. The phosphorylation of mitogen-activated protein kinase (MAPK) signaling extracellular signal-regulated kinase (ERK) and c-Jun N-terminal Kinase (JNK), except p38, was also abrogated by a synergistic interaction between AS-IV and Taxol. Moreover, AS-IV inhibited CAV-1 expression in a dose-dependent manner and reversed CAV-1 upregulation induced by Taxol administration. Mechanism study further demonstrated that AS-IV treatment triggered the eNOS/NO/ONOO- pathway via inhibiting CAV-1, which led to intense oxidant damage. CAV-1 overexpression abolished the chemosensitizing effects of AS-IV to Taxol by inhibiting oxidative stress. In vivo experiments further validated that AS-IV increased Taxol chemosensitivity on breast cancer via inhibiting CAV-1 expression, followed by activation of the eNOS/NO/ONOO- pathway. Taken together, our findings not only suggested the potential of AS-IV as a promising candidate to enhance chemosensitivity, but also highlighted the significance of CAV-1 as the target to reverse cancer drug resistance.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Caveolina 1/metabolismo , Estrés Oxidativo/efectos de los fármacos , Paclitaxel/farmacología , Saponinas/farmacología , Triterpenos/farmacología , Animales , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Células MCF-7 , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ácido Peroxinitroso/metabolismo , Fosforilación , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Mol Cancer ; 18(1): 99, 2019 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-31122259

RESUMEN

BACKGROUND: Our previous report demonstrated that genetic ablation of miR-301a reduces Kras-driven lung tumorigenesis in mice. However, the impact of miR-301a on host anti-tumor immunity remains unexplored. Here we assessed the underlying molecular mechanisms of miR-301a in the tumor microenvironment. METHODS: The differentially expressed genes were identified by using deep sequencing. The immune cell counts, and cytokines expression were analyzed by realtime PCR, immunohistochemistry and flow cytometry. The role of miR-301a/Runx3 in lung tumor was evaluated on cell growth, migration and invasion. The function of miR-301a/Runx3 in regulating tumor microenvironment and tumor metastasis were evaluated in Kras transgenic mice and B16/LLC1 syngeneic xenografts tumor models. RESULTS: In this work, we identified 1166 up-regulated and 475 down-regulated differentially expressed genes in lung tumor tissues between KrasLA2 and miR-301a-/-; KrasLA2 mice. Immune response and cell cycle were major pathways involved in the protective role of miR-301a deletion in lung tumorigenesis. Overexpression of the miR-301a target, Runx3, was an early event identified in miR-301a-/-; KrasLA2 mice compared to WT-KrasLA2 mice. We found that miR-301a deletion enhanced CD8+ T cell accumulation and IFN-γ production in the tumor microenvironment and mediated antitumor immunity. Further studies revealed that miR-301a deficiency in the tumor microenvironment effectively reduced tumor metastasis by elevating Runx3 and recruiting CD8+ T cells, whereas miR-301a knockdown in tumor cells themselves restrained cell migration by elevating Runx3 expression. CONCLUSIONS: Our findings further underscore that miR-301a facilitates tumor microenvironment antitumor immunity by Runx3 suppression in lung tumorigenesis.


Asunto(s)
Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Regulación hacia Abajo , Perfilación de la Expresión Génica/métodos , Neoplasias Pulmonares/patología , MicroARNs/genética , Células A549 , Animales , Linfocitos T CD8-positivos , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias Pulmonares/genética , Ratones , Metástasis de la Neoplasia , Trasplante de Neoplasias , Proteínas Proto-Oncogénicas p21(ras)/genética , Análisis de Secuencia de ARN
9.
J Chem Inf Model ; 59(3): 1073-1084, 2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30715873

RESUMEN

Blockade of the human ether-à-go-go-related gene (hERG) channel by small molecules induces the prolongation of the QT interval which leads to fatal cardiotoxicity and accounts for the withdrawal or severe restrictions on the use of many approved drugs. In this study, we develop a deep learning approach, termed deephERG, for prediction of hERG blockers of small molecules in drug discovery and postmarketing surveillance. In total, we assemble 7,889 compounds with well-defined experimental data on the hERG and with diverse chemical structures. We find that deephERG models built by a multitask deep neural network (DNN) algorithm outperform those built by single-task DNN, naïve Bayes (NB), support vector machine (SVM), random forest (RF), and graph convolutional neural network (GCNN). Specifically, the area under the receiver operating characteristic curve (AUC) value for the best model of deephERG is 0.967 on the validation set. Furthermore, based on 1,824 U.S. Food and Drug Administration (FDA) approved drugs, 29.6% drugs are computationally identified to have potential hERG inhibitory activities by deephERG, highlighting the importance of hERG risk assessment in early drug discovery. Finally, we showcase several novel predicted hERG blockers on approved antineoplastic agents, which are validated by clinical case reports, experimental evidence, and the literature. In summary, this study presents a powerful deep learning-based tool for risk assessment of hERG-mediated cardiotoxicities in drug discovery and postmarketing surveillance.


Asunto(s)
Cardiotoxicidad , Biología Computacional/métodos , Aprendizaje Profundo , Antineoplásicos/efectos adversos , Relación Dosis-Respuesta a Droga , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Medición de Riesgo
10.
Int J Mol Sci ; 20(14)2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31311103

RESUMEN

Amyrins are the immediate precursors of many pharmaceutically important pentacyclic triterpenoids. Although various amyrin synthases have been identified, little is known about the relationship between protein structures and the constituent and content of the products. IaAS1 and IaAS2 identified from Ilex asprella in our previous work belong to multifunctional oxidosqualene cyclases and can produce α-amyrin and ß-amyrin at different ratios. More than 80% of total production of IaAS1 is α-amyrin; while IaAS2 mainly produces ß-amyrin with a yield of 95%. Here, we present a molecular modeling approach to explore the underlying mechanism for selective synthesis. The structures of IaAS1 and IaAS2 were constructed by homology modeling, and were evaluated by Ramachandran Plot and Verify 3D program. The enzyme-product conformations generated by molecular docking indicated that ASP484 residue plays an important role in the catalytic process; and TRP611 residue of IaAS2 had interaction with ß-amyrin through π-σ interaction. MM/GBSA binding free energy calculations and free energy decomposition after 50 ns molecular dynamics simulations were performed. The binding affinity between the main product and corresponding enzyme was higher than that of the by-product. Conserved amino acid residues such as TRP257; TYR259; PHE47; TRP534; TRP612; and TYR728 for IaAS1 (TRP257; TYR259; PHE473; TRP533; TRP611; and TYR727 for IaAS2) had strong interactions with both products. GLN450 and LYS372 had negative contribution to binding affinity between α-amyrin or ß-amyrin and IaAS1. LYS372 and ARG261 had strong repulsive effects for the binding of α-amyrin with IaAS2. The importance of Lys372 and TRP612 of IaAS1, and Lys372 and TRP611 of IaAS2, for synthesizing amyrins were confirmed by site-directed mutagenesis. The different patterns of residue-product interactions is the cause for the difference in the yields of two products.


Asunto(s)
Transferasas Intramoleculares/química , Simulación del Acoplamiento Molecular , Ácido Oleanólico/análogos & derivados , Triterpenos Pentacíclicos/metabolismo , Proteínas de Plantas/química , Sitios de Unión , Ilex/enzimología , Ilex/metabolismo , Transferasas Intramoleculares/metabolismo , Ácido Oleanólico/química , Ácido Oleanólico/metabolismo , Triterpenos Pentacíclicos/química , Proteínas de Plantas/metabolismo , Unión Proteica
11.
Int J Mol Sci ; 19(3)2018 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-29495545

RESUMEN

Hepatic fibrosis is the main pathological basis for chronic cirrhosis, and activated hepatic stellate cells (HSCs) are the primary cells involved in liver fibrosis. Our study analyzed anti-fibrosis long noncoding RNAs (lncRNAs) in activated human HSCs (hHSCs). We performed RNA sequencing (RNA-seq) and bioinformatics analysis to determine whether lncRNA expression profile changes between hHSCs activation and quiescence. Eight differentially expressed (DE) lncRNAs and three pairs of co-expression lncRNAs-mRNAs were verified by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). A total of 34146 DE lncRNAs were identified in this study. Via gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, we found several DE lncRNAs regulated hHSC activation by participating in DNA bending/packaging complex, growth factor binding and the Hippo signaling pathway (p < 0.05). With lncRNA-mRNA co-expression analysis, three lncRNAs were identified to be associated with connective tissue growth factor (CTGF), fibroblast growth factor 2 (FGF2) and netrin-4 (NTN4). The quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) results of the eight DE lncRNAs and three pairs of co-expression lncRNAs-mRNAs were consistent with the RNA-seq data and previous reports. Several lncRNAs may serve as potential targets to reverse the progression of liver fibrosis. This study provides a first insight into lncRNA expression profile changes associated with activated human HSCs.


Asunto(s)
Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/genética , ARN Largo no Codificante/genética , Transcriptoma , Biomarcadores , Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes , Células Estrelladas Hepáticas/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunofenotipificación , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Fenotipo , Interferencia de ARN , ARN Mensajero/genética , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Ácido Valproico/análogos & derivados , Ácido Valproico/farmacología
12.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 49(4): 656-659, 2018 Jul.
Artículo en Zh | MEDLINE | ID: mdl-30378324

RESUMEN

OBJECTIVE: To determine the effect of implant position on clinical crown length and papilla fills in implant-supported maxillary central incisors. METHODS: One implant replacing the 11th or 21st tooth was given to 158 patients who lost a maxillary central incisor after trauma. The contra-lateral central incisors were used as controls. The three-dimensional positional parameters were estimated using standardized photographs of the cast models, clinical photographs and peri-apical radiographs. Paired t tests were performed to examine the differences between the implants and the control teeth in clinical crown length, papilla fills, proximal bone crest levels, and the horizontal implant-teeth distance at the mesial and distal implant. Pearson correlations were used to identify the implant positional parameters associated with crown length and papilla fills. RESULTS: The implant-supported crowns were statistically longer than the controls [(10.9±1.1) mm vs. (10.4±0.8) mm, P<0.05]. Greater papilla fills were found in the mesial implants and distal contra-lateral teeth compared with the distal implants (P<0.000 1). The implants had higher levels of mesial proximal bone crest than the distal [(2.2±1.4) mm vs. (1.2±1.5) mm, P<0.05]. The oro-facial position of the implants was associated with the crown length (R=0.602, P=0.001). But the crown length was not correlated with the sagital angulation of the implants or the vertical distance from the implant fixture to the soft tissue margin. The proximal bone crest level was correlated with the papilla fill height (R=0.400, P=0.001). CONCLUSION: An implant positioned buccally results in longer crown length. Minor buccal angulations of the implant do not necessarily result in increased crown length. Appropriate position and input depth may help avoid bone absorption and papilla shrinkage.


Asunto(s)
Coronas , Implantes Dentales de Diente Único , Incisivo , Humanos , Maxilar
13.
Biochem Biophys Res Commun ; 488(2): 400-406, 2017 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-28502636

RESUMEN

Alloxan has been used as a diabetogenic agent to induce diabetes. It selectively induces pancreatic ß-cell death. The specific toxicity, however, is not fully understood. In this study, we observed the effect of alloxan on proteasome function. We found that alloxan caused the accumulation of ubiquitinated proteins in NRK cells through the inhibition of the proteolytic activities of the proteasome. Biochemistry experiments with purified 26S and 20S proteasomes revealed that alloxan directly acts on the chymotrypsin- and trypsin-like peptidase activities. These results demonstrate that alloxan is a proteasome inhibitor, which suggests that its specific toxicity toward ß-cell is at least in part through proteasome inhibition.


Asunto(s)
Aloxano/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Aloxano/química , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Inhibidores de Proteasoma/química , Ratas , Relación Estructura-Actividad
14.
J Med Virol ; 89(7): 1158-1167, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27966790

RESUMEN

It is need for development of new means against influenza virus due to the lack of efficacy of available therapeutic strategies. In previous research, 1,8-cineol exert its inhibition of nuclear factor (NF)-κB, the main regulator of cytokine and chemokine production in influenza, and anti-inflammatory activity. These fact supports and helps establish the hypothesis that 1,8-cineol may have synergism with an antiviral on influenza virus infection. The combined effect of 1,8-cineol with oseltamivir in a mouse type A influenza virus (Victoria/3/75,H3N2) model were examined. We initially tested combinations of 1,8-cineol (30, 60, and 120 mg/kg/day) and oseltamivir (0.1, 0.2, and 0.4 mg/kg/day). In addition, the 0.4 mg/kg/day of oseltamivir combined with 120 mg/kg of 1,8-cineol was selected for further combination studies. Oseltamivir was 30%, 40%, and 60% protective at 0.1, 0.2, and 0.4 mg/kg/d. Combinations of 1,8-cineol (30, 60, and 120 mg/kg/d) and oseltamivir (0.1, 0.2, and 0.4 mg/kg/d) increased the number of survivors and mean survival time (MST) following combination treatment was greater than monotherapy alone. Three dimensional analysis of drug interactions using the MacSynergy method showed a strong synergistic effect of these drug combinations. Survival, MST, lung parameters (lung index, viral titers, and pathology), and cytokines (IL-10, TNF-α, IL-1ß, and IFN-γ) expression in lung demonstrated the high effectiveness of the combination. Combined treatment was associated with longer MST and more reduced cytokine levels than oseltamivir alone. These data demonstrate that combinations of 1,8-cineol and oseltamivir have synergistic effect against influenza A virus (H3N2) infection.


Asunto(s)
Antivirales/uso terapéutico , Ciclohexanoles/uso terapéutico , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Gripe Humana/tratamiento farmacológico , Monoterpenos/uso terapéutico , Oseltamivir/uso terapéutico , Animales , Antivirales/administración & dosificación , Ciclohexanoles/administración & dosificación , Citocinas/efectos de los fármacos , Citocinas/genética , Citocinas/inmunología , Sinergismo Farmacológico , Quimioterapia Combinada , Eucaliptol , Humanos , Gripe Humana/virología , Interleucina-10/genética , Interleucina-10/inmunología , Pulmón/inmunología , Pulmón/virología , Ratones , Monoterpenos/administración & dosificación , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/virología , Oseltamivir/administración & dosificación , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
15.
Arch Virol ; 162(6): 1661-1669, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28243801

RESUMEN

Ribavirin is a broad-spectrum antiviral agent that is used against RNA and DNA viruses and has been reported to inhibit infection by influenza A and B virus in vitro and in vivo. Studies have shown that ribavirin can lower convalescent antibody titers in young children hospitalized with influenza. Here, we report that ribavirin administration in juvenile mice significantly attenuated respiratory immune responses, production of total IgA and hemagglutinin (HA)-specific secretory IgA responses on the mucosal surface. In contrast, systemic IgG and IgA responses were not affected. Ribavirin significantly suppressed toll-like receptor 2 and 4 expression in the lung and decreased the level of IL-1ß, IL-6, TNF-α, and IFN-γ in lung tissues of mice infected with influenza virus. Our findings suggest ribavirin appears to be able to inhibit viral replication and, as a result, TLR and cytokine expression are not up-regulated, attenuating inflammation as well as the respiratory tract's immune response.


Asunto(s)
Antivirales/administración & dosificación , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/inmunología , Sistema Respiratorio/efectos de los fármacos , Ribavirina/administración & dosificación , Replicación Viral/efectos de los fármacos , Animales , Femenino , Inmunoglobulina A/sangre , Inmunoglobulina A/inmunología , Inmunoglobulina G/sangre , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/fisiología , Interferón gamma/genética , Interleucina-1beta/genética , Interleucina-6/genética , Pulmón/inmunología , Pulmón/virología , Ratones , Sistema Respiratorio/inmunología , Receptor Toll-Like 2/efectos de los fármacos , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/efectos de los fármacos , Receptor Toll-Like 4/genética , Factor de Necrosis Tumoral alfa/genética
16.
BMC Complement Altern Med ; 17(1): 130, 2017 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-28235408

RESUMEN

BACKGROUND: Lianhuaqingwen Capsule (LH-C) is a traditional Chinese medicine (TCM) formula used to treat respiratory tract infectious diseases in Chinese. The aim of this study was to determine the antiviral activity of LH-C and its immunomodulatory effects on viral infection. METHOD: The in vitro cytotoxicity and antiviral activity of LH-C was determined by MTT and Plaque reduction assays. Time course study under single-cycle virus growth conditions were used to determine which stage of viral replication was blocked. The effect of LH-C on the nuclear export of the viral nucleoprotein was examined using an indirect immunofluorescence assay. The regulation to different signaling transduction events and cytokine/chemokine expression of LH-C was evaluated using Western blotting and real-time RT-PCR. After virus inoculation, BALB/c mice were administered with LH-C of different concentrations for 5 days. Body-weight, viral titers and lung pathology of the mice were measured, the level of inflammatory cytokines were also examined using real-time RT-PCR. RESULTS: LH-C inhibited the proliferation of influenza viruses of various strain in vitro, with the 50% inhibitory concentration (IC50) ranging from 0.35 to 2 mg/mL. LH-C blocked the early stages (0-2 h) of virus infection, it also suppressed virus-induced NF-kB activation and alleviated virus-induced gene expression of IL-6, IL-8, TNF-a, IP-10, and MCP-1 in a dose-dependent manner. LH-C treatment efficiently impaired the nuclear export of the viral RNP. A decrease of the viral titers in the lungs of mice were observed in groups administered with LH-C. The level of inflammatory cytokines were also decreased in the early stages of infection. CONCLUSIONS: LH-C, as a TCM prescription, exerts broad-spectrum effects on a series of influenza viruses, including the newly emerged H7N9, and particularly regulates the immune response of virus infection. Thus, LH-C might be a promising option for treating influenza virus infection.


Asunto(s)
Antiinflamatorios/farmacología , Medicamentos Herbarios Chinos/farmacología , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Orthomyxoviridae/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Células A549 , Animales , Antiinflamatorios/uso terapéutico , Citocinas/metabolismo , Medicamentos Herbarios Chinos/uso terapéutico , Femenino , Humanos , Inflamación/tratamiento farmacológico , Pulmón/efectos de los fármacos , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , FN-kappa B/metabolismo , Proteínas de la Nucleocápside/metabolismo , Fitoterapia
17.
Molecules ; 20(5): 8791-9, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25988610

RESUMEN

An approach for molecular similarity/substructure searching based on structural hierarchy matching is proposed. In this approach, small molecules are divided into two categories, acyclic and cyclic forms. The latter are further divided into three structural hierarchies, namely, framework, complicated-, and mono-rings. During searching, the similarity coefficients of a structural query and each retrieved molecule are calculated using the hierarchy of the query as the reference. A total of 13,911 chemicals were involved in this work, from which the minimal cyclic and acyclic substructures are extracted, and further processed into fuzzy structural fingerprints. Subsequently, the fingerprints are used as the searching indices for molecular similarity or substructure searching. The tests show that this approach can give user options to choose between one-substructure and multi-substructure searching with sorted results. Moreover, this algorithm has the potential to be developed for molecular similarity searching and substructure analysis.


Asunto(s)
Algoritmos , Bases de Datos de Compuestos Químicos , Estructura Molecular , Relación Estructura-Actividad
18.
Protein Expr Purif ; 101: 133-7, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24993790

RESUMEN

3-Deoxy-d-manno-octulosonate 8-phosphate synthase (KDO8PS) [EC 4.1.2.16] is the first and rate-limiting enzyme in the 3-deoxy-d-manno-octulosonate (KDO) biosynthetic pathway. The enzyme is widely expressed in bacteria and plants. Their well conserved protein sequences imply a similar oligomeric arrangement. However, the reported size exclusion chromatrographic analysis suggested a species-dependent self-assembling. To clarify the discrepancy and explore the self-assembling property of KDO8PS, we expressed and purified the Arabidopsis enzyme in Escherichia coli system. The enzyme was highly purified using a two-step purification strategy including nickel affinity and size exclusion chromatography with an expected pH activity profile. The identity of the purified enzyme was confirmed by Western-blot and mass fingerprints. Further analysis by analytical ultracentrifugation indicated that both bacteria and Arabidopsis enzymes are homotetramer. Furthermore, the purified enzyme from the plant has been crystallized and a complete set of X-ray data to 2.1Å resolution has been collected.


Asunto(s)
Aldehído-Liasas/genética , Aldehído-Liasas/ultraestructura , Arabidopsis/enzimología , Aldehído-Liasas/biosíntesis , Secuencia de Aminoácidos , Cromatografía en Gel , Cristalización , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Datos de Secuencia Molecular , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
19.
Nature ; 451(7181): 964-9, 2008 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-18288188

RESUMEN

Glucose flux through the hexosamine biosynthetic pathway leads to the post-translational modification of cytoplasmic and nuclear proteins by O-linked beta-N-acetylglucosamine (O-GlcNAc). This tandem system serves as a nutrient sensor to couple systemic metabolic status to cellular regulation of signal transduction, transcription, and protein degradation. Here we show that O-GlcNAc transferase (OGT) harbours a previously unrecognized type of phosphoinositide-binding domain. After induction with insulin, phosphatidylinositol 3,4,5-trisphosphate recruits OGT from the nucleus to the plasma membrane, where the enzyme catalyses dynamic modification of the insulin signalling pathway by O-GlcNAc. This results in the alteration in phosphorylation of key signalling molecules and the attenuation of insulin signal transduction. Hepatic overexpression of OGT impairs the expression of insulin-responsive genes and causes insulin resistance and dyslipidaemia. These findings identify a molecular mechanism by which nutritional cues regulate insulin signalling through O-GlcNAc, and underscore the contribution of this modification to the aetiology of insulin resistance and type 2 diabetes.


Asunto(s)
Resistencia a la Insulina/fisiología , N-Acetilglucosaminiltransferasas/metabolismo , Fosfatidilinositoles/metabolismo , Sistemas de Mensajero Secundario , Acetilglucosamina/metabolismo , Acetilglucosamina/farmacología , Animales , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Insulina/farmacología , Metabolismo de los Lípidos , Hígado/enzimología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , N-Acetilglucosaminiltransferasas/química , N-Acetilglucosaminiltransferasas/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilación/efectos de los fármacos , Estructura Terciaria de Proteína , Transporte de Proteínas , Sistemas de Mensajero Secundario/efectos de los fármacos
20.
Food Res Int ; 176: 113846, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38163692

RESUMEN

The aim of this study was to investigate the effect of replacing different amounts (5 %, 10 %, 15 %, 20 % and 25 %) of lean meat with Tenebrio molitor larvae protein (TMLP) on the quality profiles of hybrid frankfurters. The results showed that there were no obvious differences in moisture, protein or fat content of all the hybrid frankfurters (P > 0.05), only a higher substitution rate (from 10 % to 25 %) resulted in a higher ash content than the control group (P < 0.05). With the increasing replacement rate (5 %, 10 % and 15 %), the cooking loss of the hybrid frankfurters showed the similar effects as the control group (P > 0.05), whereas the higher replacement rates of 20 % and 25 % obviously decreased the emulsion stability of the hybrid frankfurters. Moreover, with lower substitution rate (5 %, 10 % and 15 %) there were no significant differences in cooking loss between the hybrid frankfurters and the control group (P > 0.05), whereas the higher substitution rates (20 % and 25 %) obviously increased the cooking loss of the hybrid frankfurters (P < 0.05). Meanwhile, as the level of substitution increased, the hybrid frankfurters had higher digestibility, poorer texture than the standard frankfurters, as well as the rheological behaviour of hybrid meat batters (P < 0.05). The results showed that a moderate level (15 %) of TMLP was used to replace lean pork could be potentially and successfully be used to produce hybrid frankfurters.


Asunto(s)
Productos de la Carne , Tenebrio , Animales , Estudios de Factibilidad , Color , Culinaria , Productos de la Carne/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA