Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(14): e2306446, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38105592

RESUMEN

Copper-based nanozymes exhibit excellent antitumor activity but are easily inactivated due to the disturbance of proteins or other macromolecules with sulfhydryl. A tumor microenvironment-responsive CuMnO@Fe3O4 (CMF) core-shell nanozyme for highly efficient tumor theranostics is developed. A platelet-derived growth factor receptor-ß-recognizing cyclic peptide (PDGFB) target is conjugated to the surface of CMF to fabricate a tumor-specific nanozyme (PCMF). The core-shell nanostructure significantly avoids the oxidation and inactivation of copper-based nanozyme, promoting the antitumor activity of PCMF. The weak acid- and GSH-activated T1 and T2 relaxation rate of PCMF contributes to T1 and T2 dual contrast imaging at the tumor site. In addition, the PCMF disintegrates and produces some metal ions that possess Fenton catalytic activity (i.e., Cu+, Mn2+, and Fe2+) under TME. This process significantly depletes GSH, accelerates Fenton and Fenton-like reactions, enhances cellular reactive oxygen species (ROS) levels, and induces cancer cell apoptosis and ferroptosis. PCMF also exhibits photothermal functions, so it can be used in combined photothermal therapy, ferroptosis therapy, and chemodynamic therapy, improving anticancer activity. This work provides insights into the design of an exquisite nanostructure for high-sensitive and tumor-specific theranostics.


Asunto(s)
Nanoestructuras , Neoplasias , Humanos , Medicina de Precisión , Cobre , Microambiente Tumoral , Imagen por Resonancia Magnética , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Peróxido de Hidrógeno , Línea Celular Tumoral
2.
J Nanobiotechnology ; 22(1): 73, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374027

RESUMEN

The formation of blood vessel system under a relatively higher Cu2+ ion level is an indispensable precondition for tumor proliferation and migration, which was assisted in forming the tumor immune microenvironment. Herein, a copper ions nano-reaper (LMDFP) is rationally designed not only for chelating copper ions in tumors, but also for combination with photothermal therapy (PTT) to improve antitumor efficiency. Under 808 nm laser irradiation, the fabricated nano-reaper converts light energy into thermal energy to kill tumor cells and promotes the release of D-penicillamine (DPA) in LMDFP. Photothermal properties of LMDFP can cause tumor ablation in situ, which further induces immunogenic cell death (ICD) to promote systematic antitumor immunity. The released DPA exerts an anti-angiogenesis effect on the tumor through chelating copper ions, and inhibits the expression of programmed death ligand 1 (PD-L1), which synergizes with PTT to enhance antitumor immunity and inhibit tumor metastasis. Meanwhile, the nanoplatform can emit near-infrared-IIb (NIR-IIb) fluorescence under 980 nm excitation, which can be used to track the nano-reaper and determine the optimal time point for PTT. Thus, the fabricated nano-reaper shows powerful potential in inhibiting tumor growth and metastasis, and holds great promise for the application of copper nanochelator in precise tumor treatment.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Humanos , Fototerapia , Cobre/farmacología , Fluorescencia , Neoplasias/tratamiento farmacológico , Iones , Línea Celular Tumoral , Microambiente Tumoral
3.
Ecotoxicol Environ Saf ; 280: 116551, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38875818

RESUMEN

Polystyrene nanoplastics (PS-NPs), emerging and increasingly pervasive environmental contaminants, have the potential to cause persistent harm to organisms. Although previous reports have documented local accumulation and adverse effects in a variety of major organs after PS-NPs exposure, the impact of PS-NPs exposure on erectile function remains unexplored. Herein, we established a rat model of oral exposure to 100 nm PS-NPs for 28 days. To determine the best dose range of PS-NPs, we designed both low-dose and high-dose PS-NPs groups, which correspond to the minimum and maximum human intake doses, respectively. The findings indicated that PS-NPs could accumulate within the corpus cavernosum and high dose but not low dose of PS-NPs triggered erectile dysfunction. Moreover, the toxicological effects of PS-NPs on erectile function include fibrosis in the corpus cavernous, endothelial dysfunction, reduction in testosterone levels, elevated oxidative stress and apoptosis. Overall, this study revealed that PS-NPs exposure can cause erectile dysfunction via multiple ways, which provided new insights into the toxicity of PS-NPs.


Asunto(s)
Disfunción Eréctil , Estrés Oxidativo , Pene , Poliestirenos , Ratas Sprague-Dawley , Animales , Disfunción Eréctil/inducido químicamente , Masculino , Poliestirenos/toxicidad , Ratas , Estrés Oxidativo/efectos de los fármacos , Pene/efectos de los fármacos , Testosterona/sangre , Nanopartículas/toxicidad , Apoptosis/efectos de los fármacos , Contaminantes Ambientales/toxicidad
4.
Neurobiol Dis ; 179: 106042, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36804284

RESUMEN

Mild hypothermia has been proven to inhibit microglia activation after TBI. Exosomal microRNA derived from microglia played a critical role in promoting neurite outgrowth and synapse recovery. Here, we aimed to investigate the role of microRNAs in microglial exosomes after hypothermia treatment on neuronal regeneration after TBI. For in vitro study, stretch-injured neurons were co-cultured with microglial exosomes. For in vivo study, C57BL/6 mice were under controlled cortical impact and injected with microglial exosomes. The results showed that MG-LPS-EXOHT increased the number of dendrite branches and total length of dendrites both in vitro and in vivo, elevated the expression levels of PSD-95 and GluR1 in stretch-injured neurons, and increased spine density in the pericontusion region. Moreover, MG-LPS-EXOHT improved motor function and motor coordination. A high-throughput sequencing showed that miR-20b-5p was upregulated in MG-LPS-EXOHT. Elevating miR-20b-5p promoted neurite outgrowth and synapse recovery of injured neurons both in vitro and in vivo. Following mechanistic study demonstrated that miR-20b-5p might promote neurite outgrowth and synapse recovery by directly targeting PTEN and activating PI3K-AKT pathway. In conclusion, mild hypothermia could modify the microRNA prolife of exosomes derived from LPS activated BV2 cells. Furthermore, high level of microglial exosomal miR-20b-5p induced by mild hypothermia could transfer into injured neurons and promote neurite outgrowth and synapse recovery after TBI via activating the PI3K-AKT pathway by suppressing PTEN expression.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Hipotermia , MicroARNs , Ratones , Animales , Microglía/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Hipotermia/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Lipopolisacáridos/metabolismo , Ratones Endogámicos C57BL , Lesiones Traumáticas del Encéfalo/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proyección Neuronal/fisiología , Sinapsis/metabolismo
5.
J Nanobiotechnology ; 21(1): 9, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609374

RESUMEN

As one of the most significant imaging modalities currently available, magnetic resonance imaging (MRI) has been extensively utilized for clinically accurate cancer diagnosis. However, low signal-to-noise ratio (SNR) and low specificity for tumors continue to pose significant challenges. Inspired by the distance-dependent magnetic resonance tuning (MRET) phenomenon, the tumor microenvironment (TME)-activated off-on T1-T2 dual-mode MRI nanoswitch is presented in the current study to realize the sensitive early diagnosis of tumors. The tumor-specific nanoswitch is designed and manufactured on the basis of PDGFB-conjugating ferroferric oxide coated by Mn-doped silica (PDGFB-FMS), which can be degraded under the high-concentration GSH and low pH in TME to activate the T1-T2 dual-mode MRI signals. The tumor-specific off-on dual-mode MRI nanoswitch can significantly improve the SNR and is used successfully for the accurate diagnosis of early-stage tumors, particularly for orthotopic prostate cancer. In addition, the systemic delivery of the nanoswitch did not cause blood or tissue damage, and it can be excreted out of the body in a timely manner, demonstrating excellent biosafety. Overall, the strategy is a significant step in the direction of designing off-on dual-mode MRI nanoprobes to improve imaging accuracy, which opens up new avenues for the development of new MRI probes.


Asunto(s)
Medios de Contraste , Neoplasias , Masculino , Humanos , Proteínas Proto-Oncogénicas c-sis , Neoplasias/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Dióxido de Silicio , Microambiente Tumoral
6.
J Nanobiotechnology ; 21(1): 59, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36810074

RESUMEN

Chemodynamic therapy of cancer is limited by insufficient endogenous H2O2 generation and acidity in the tumor microenvironment (TME). Herein, we developed a biodegradable theranostic platform (pLMOFePt-TGO) involving composite of dendritic organosilica and FePt alloy, loaded with tamoxifen (TAM) and glucose oxidase (GOx), and encapsulated by platelet-derived growth factor-B (PDGFB)-labeled liposomes, that effectively uses the synergy among chemotherapy, enhanced chemodynamic therapy (CDT), and anti-angiogenesis. The increased concentration of glutathione (GSH) present in the cancer cells induces the disintegration of pLMOFePt-TGO, releasing FePt, GOx, and TAM. The synergistic action of GOx and TAM significantly enhanced the acidity and H2O2 level in the TME by aerobiotic glucose consumption and hypoxic glycolysis pathways, respectively. The combined effect of GSH depletion, acidity enhancement, and H2O2 supplementation dramatically promotes the Fenton-catalytic behavior of FePt alloys, which, in combination with tumor starvation caused by GOx and TAM-mediated chemotherapy, significantly increases the anticancer efficacy of this treatment. In addition, T2-shortening caused by FePt alloys released in TME significantly enhances contrast in the MRI signal of tumor, enabling a more accurate diagnosis. Results of in vitro and in vivo experiments suggest that pLMOFePt-TGO can effectively suppress tumor growth and angiogenesis, thus providing an exciting potential strategy for developing satisfactory tumor theranostics.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Línea Celular Tumoral , Microambiente Tumoral , Peróxido de Hidrógeno/metabolismo , Neoplasias/tratamiento farmacológico , Apoptosis , Glucosa Oxidasa/metabolismo
7.
Br J Neurosurg ; 37(5): 1010-1015, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33095082

RESUMEN

INTRODUCTION: Primary intracranial angioleiomyoma (ALM) is quite rare and ALM of the adolescent is even rarer. To date, only three cases of adolescents have been reported. MATERIAL AND METHODS: We carefully introduced a new location of intracranial ALM in an adolescent. The clinical, pathological and imaging features of intracranial ALM were described in detail and published literature was reviewed. RESULTS: To our best knowledge, we presented the fourth primary intracranial ALM of adolescent and the first ALM of the right frontal cranial base with intracranial and extracranial communication. We not only summarize the generalities of ALM but also illustrate the difference between adult and adolescent ALM in the aspects of gender and age predominance, etiology, common location and pathologic subtype. CONCLUSIONS: We reported the first ALM of the right frontal cranial base with intracranial and extracranial communication of an adolescent with a good prognosis. We also summarize the generalities of ALM and illustrate the difference between adult and adolescent ALM. Future investigation of control study with large patient cohorts is needed for both adult and adolescent ALM to compare the difference between them.


Asunto(s)
Angiomioma , Adulto , Adolescente , Humanos , Angiomioma/diagnóstico por imagen , Angiomioma/cirugía , Base del Cráneo
8.
Small ; 18(51): e2205647, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36328734

RESUMEN

Tumor hypoxia and systemic toxicity seriously affect the efficacy of photodynamic therapy (PDT) and are considered as the "Achilles' heel" of PDT. Herein, to combat such limitations, an intelligent orthogonal emissions LDNP@SiO2 -CaO2 and folic acid-polyethylene glycol-Ce6 nanodrug is rationally designed and fabricated not only for relieving the hypoxic tumor microenvironment (TME) to enhance PDT efficacy, but also for determining the optimal triggering time through second near-infrared (NIR-II) fluorescence imaging. The designed nanodrug continuously releases a large amount of O2 , H2 O2 , and Ca2+ ions when exposed to the acidic TME. Meanwhile, under downshifting NIR-II bioimaging guidance, chlorine e6 (Ce6) consumes oxygen to produce 1 O2 upon excitation of upconversion photon. Moreover, cytotoxic reactive oxygen species (ROS) and calcium overload can induce mitochondria injury and thus enhance the oxidative stress in tumor cells. As a result, the NIR-II bioimaging guided TME-responsive oxygen self-sufficient PDT nanosystem presents enhanced anti-tumor efficacy without obvious systemic toxicity. Thus, the fabricated nanodrug offers great potential for designing an accurate cancer theranostic system.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Fotoquimioterapia/métodos , Oxígeno , Dióxido de Silicio , Línea Celular Tumoral , Imagen Óptica , Fármacos Fotosensibilizantes/farmacología , Microambiente Tumoral , Nanopartículas/uso terapéutico
9.
J Nanobiotechnology ; 20(1): 264, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672821

RESUMEN

The application of chemodynamic therapy (CDT) for cancer is a serious challenge owing to the low efficiency of the Fenton catalyst and insufficient H2O2 expression in cells. Herein, we fabricated a PDGFB targeting, biodegradable FePt alloy assembly for magnetic resonance imaging (MRI)-guided chemotherapy and starving-enhanced chemodynamic therapy for cancer using PDGFB targeting, pH-sensitive liposome-coated FePt alloys, and GOx (pLFePt-GOx). We found that the Fenton-catalytic activity of FePt alloys was far stronger than that of traditional ultrasmall iron oxide nanoparticle (UION). Upon entry into cancer cells, pLFePt-GOx nanoliposomes degraded into many tiny FePt alloys and released GOx owing to the weakly acidic nature of the tumor microenvironment (TME). The released GOx-mediated glucose consumption not only caused a starvation status but also increased the level of cellular H2O2 and acidity, promoting Fenton reaction by FePt alloys and resulting in an increase in reactive oxygen species (ROS) accumulation in cells, which ultimately realized starving-enhanced chemodynamic process for killing tumor cells. The anticancer mechanism of pLFePt-GOx involved ROS-mediated apoptosis and ferroptosis, and glucose depletion-mediated starvation death. In the in vivo assay, the systemic delivery of pLFePt-GOx showed excellent antitumor activity with low biological toxicity and significantly enhanced T2-weighted magnetic resonance imaging (MRI) signal of the tumor, indicating that pLFePt-GOx can serve as a highly efficient theranostic tool for cancer. This work thus describes an effective, novel multi-modal cancer theranostic system.


Asunto(s)
Nanopartículas , Neoplasias , Aleaciones , Línea Celular Tumoral , Glucosa , Humanos , Peróxido de Hidrógeno/metabolismo , Imagen por Resonancia Magnética , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Proteínas Proto-Oncogénicas c-sis/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Microambiente Tumoral
10.
J Nanobiotechnology ; 20(1): 98, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35236363

RESUMEN

Iron oxide nanoparticles (IONPs)-based contrast agents are widely used for T2-weighted magnetic resonance imaging (MRI) in clinical diagnosis, highlighting the necessity and importance to evaluate their potential systematic toxicities. Although a few previous studies have documented the toxicity concerns of IONPs to major organs, limited data are available on the potential reproductive toxicity caused by IONPs, especially when administrated via intravenous injection to mimic clinical use of MRI contrast agents. Our study aimed to determine whether exposure to IONPs would affect male reproductive system and cause other related health concerns in ICR mice. The mice were intravenously injected with different concentrations IONPs once followed by routine toxicity tests of major organs and a series of reproductive function-related analyses at different timepoints. As a result, most of the contrast agents were captured by reticuloendothelial system (RES) organs such as liver and spleen, while IONPs have not presented adverse effects on the normal function of these major organs. In contrast, although IONPs were not able to enter testis through the blood testicular barrier (BTB), and they have not obviously impaired the overall testicular function or altered the serum sex hormones levels, IONPs exposure could damage Sertoli cells in BTB especially at a relative high concentration. Moreover, IONPs administration led to a short-term reduction in the quantity and quality of sperms in a dose-dependent manner, which might be attributed to the increase of oxidative stress and apoptotic activity in epididymis. However, the semen parameters have gradually returned to the normal range within 14 days after the initial injection of IONPs. Collectively, these results demonstrated that IONPs could cause reversible damage to the reproductive system of male mice without affecting the main organs, providing new guidance for the clinical application of IONPs as T2-MRI contrast agents.


Asunto(s)
Medios de Contraste , Compuestos Férricos , Animales , Medios de Contraste/toxicidad , Compuestos Férricos/toxicidad , Genitales , Nanopartículas Magnéticas de Óxido de Hierro , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos ICR
11.
Molecules ; 27(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35807221

RESUMEN

Bone homeostasis is maintained with the balance between bone formation and bone resorption, which is involved in the functional performance of osteoblast and osteoclast. Disruption of this equilibrium usually causes bone disorders including osteoporosis, osteoarthritis, and osteosclerosis. In addition, aberrant activity of bone also contributes to the bone metastasis that frequently occurs in the late stage of aggressive cancers. Orphan nuclear receptor estrogen-related receptor (ERRα) has been demonstrated to control the bone cell fate and the progression of tumor cells in bone through crosstalk with various molecules and signaling pathways. However, the defined function of this receptor in bone is inconsistent and controversial. Therefore, we summarized the latest research and conducted an overview to reveal the regulatory effect of ERRα on bone homeostasis and bone metastasis, this review may broaden the present understanding of the cellular and molecular model of ERRα and highlight its potential implication in clinical therapy.


Asunto(s)
Neoplasias Óseas , Receptores de Estrógenos , Neoplasias Óseas/metabolismo , Huesos/metabolismo , Homeostasis , Humanos , Osteoblastos/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Receptor Relacionado con Estrógeno ERRalfa
12.
J Nanobiotechnology ; 19(1): 227, 2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330298

RESUMEN

The cell membrane is widely considered as a promising delivery nanocarrier due to its excellent properties. In this study, self-assembled Pseudomonas geniculate cell membranes were prepared with high yield as drug nanocarriers, and named BMMPs. BMMPs showed excellent biosafety, and could be more efficiently internalized by cancer cells than traditional red cell membrane nanocarriers, indicating that BMMPs could deliver more drug into cancer cells. Subsequently, the BMMPs were coated with nanoselenium (Se), and subsequently loaded with Mn2+ ions and doxorubicin (DOX) to fabricate a functional nanoplatform (BMMP-Mn2+/Se/DOX). Notably, in this nanoplatform, Se nanoparticles activated superoxide dismutase-1 (SOD-1) expression and subsequently up-regulated downstream H2O2 levels. Next, the released Mn2+ ions catalyzed H2O2 to highly toxic hydroxyl radicals (·OH), inducing mitochondrial damage. In addition, the BMMP-Mn2+/Se nanoplatform inhibited glutathione peroxidase 4 (GPX4) expression and further accelerated intracellular reactive oxygen species (ROS) generation. Notably, the BMMP-Mn2+/Se/DOX nanoplatform exhibited increased effectiveness in inducing cancer cell death through mitochondrial and nuclear targeting dual-mode therapeutic pathways and showed negligible toxicity to normal organs. Therefore, this nanoplatform may represent a promising drug delivery system for achieving a safe, effective, and accurate cancer therapeutic plan.


Asunto(s)
Biomimética , Doxorrubicina/farmacología , Manganeso/farmacología , Mitocondrias/metabolismo , Nanopartículas , Selenio/química , Antineoplásicos/farmacología , Biomasa , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Quimioterapia , Células HeLa , Humanos , Peróxido de Hidrógeno/metabolismo , Iones , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa-1
13.
J Cell Mol Med ; 24(20): 11755-11767, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32918360

RESUMEN

Our objective was to determine the molecular mechanisms by which lncRNA HOXA-AS3 regulates the biological behaviour of glioblastoma multiforme (GBM). We used an lncRNA microarray assay to identify GBM-related lncRNA expression profiles. Qrt-PCR was used to survey the levels of expression of long non-coding RNA (lncRNA) HOXA-AS3 and the target gene. Dual-luciferase reporter assays were used to investigate the interaction of lncRNA HOXA-AS3, the target gene and miRNA. Western blot analysis was used to examine the expression of USP3 and epithelial-mesenchymal transition (EMT) genes. The MTT assay, transwell assay and wound healing assay were used to analyse the effects of lncRNA HOXA-AS3 on GBM cell viability, mobility and invasiveness, respectively. Our results showed that lncRNA HOXA-AS3 was significantly up-regulated in GBM cells and could promote GBM cell proliferation, invasion and migration in vitro and in vivo. HOXA-AS was found to be associated with poor survival prognosis in glioma patients. The dual-luciferase reporter assay also revealed that lncRNA HOXA-AS3 acts as a mir-455-5p sponge by up-regulating USP3 expression to promote GBM progression. Western blot analysis showed that lncRNA HOXA-AS3 could up-regulate EMT-related gene expression in GBM. Experiments showed mir-455-5p could rescue the effect of lncRNA HOXA-AS3 on cell proliferation and invasion. The newly identified HOXA-AS3/mir-455-5p/USP3 pathway offers important clues to understanding the key mechanisms underlying the action of lncRNA HOXA-AS3 in glioblastoma.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/patología , MicroARNs/genética , ARN Largo no Codificante/metabolismo , Proteasas Ubiquitina-Específicas/genética , Animales , Secuencia de Bases , Carcinogénesis/genética , Carcinogénesis/patología , Línea Celular Tumoral , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Humanos , Ratones Desnudos , MicroARNs/metabolismo , Invasividad Neoplásica , ARN Largo no Codificante/genética , Proteasas Ubiquitina-Específicas/metabolismo , Regulación hacia Arriba/genética , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Small ; 16(11): e1906870, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32091159

RESUMEN

The market of available contrast agents for clinical magnetic resonance imaging (MRI) has been dominated by gadolinium (Gd) chelates based T1 contrast agents for decades. However, there are growing concerns about their safety because they are retained in the body and are nephrotoxic, which necessitated a warning by the U.S. Food and Drug Administration against the use of such contrast agents. To ameliorate these problems, it is necessary to improve the MRI efficiency of such contrast agents to allow the administration of much reduced dosages. In this study, a ten-gram-scale facile method is developed to synthesize organogadolinium complex nanoparticles (i.e., reductive bovine serum albumin stabilized Gd-salicylate nanoparticles, GdSalNPs-rBSA) with high r1 value of 19.51 mm-1 s-1 and very low r2 /r1 ratio of 1.21 (B0 = 1.5 T) for high-contrast T1 -weighted MRI of tumors. The GdSalNPs-rBSA nanoparticles possess more advantages including low synthesis cost (≈0.54 USD per g), long in vivo circulation time (t1/2 = 6.13 h), almost no Gd3+ release, and excellent biosafety. Moreover, the GdSalNPs-rBSA nanoparticles demonstrate excellent in vivo MRI contrast enhancement (signal-to-noise ratio (ΔSNR) ≈ 220%) for tumor diagnosis.


Asunto(s)
Nanopartículas , Neoplasias , Medios de Contraste , Gadolinio , Humanos , Imagen por Resonancia Magnética , Neoplasias/diagnóstico por imagen
15.
Int J Cancer ; 143(3): 635-644, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29457830

RESUMEN

Glioblastoma multiforme (GBM) is the most lethal brain malignancy which involves multi-gene abnormality. Unfortunately, effective therapy against GBM remains lacking. Previously, we found that NRP-1 and its downstream NRP-1/GIPC1 pathway played an important role in GBM. In our study, we further investigated the upstream signaling of NRP-1 to understand how it is regulated. First, we identified that hsa-miR-124-3p was miRNA differentially expressed in GBM and in normal brain tissues by high-throughput sequencing. Then, by dual luciferase reporter gene, we found miR-124-3p can specially bind to the 3'UTR region of the NRP-1 thus suppresses its expression. Moreover, miR-124-3p overexpression significantly inhibited GBM cell proliferation, migration and tumor angiogenesis which resulted in GBM apoptosis and cell cycle arrest, putatively via NRP-1 mediated PI3K/Akt/NFκB pathways activation in GBM cells. Meanwhile, miR-124-3p overexpression also suppressed tumor growth and reduced tumor angiogenesis when targeted by NRP-1 in a PDX model. Furthermore, NRP-1 mAb exerted synergistic inhibitory effects with miR-124-3p overexpression in GBM. Thus, we discovered that miR-124-3p acts as the upstream suppressor of NRP-1 which promotes GBM cell development and growth by PI3K/Akt/NFκB pathway. The miR-124-3p/NRP-1/GIPC1 pathway as a new pathway has a vital role in GBM, and it could be considered as the potential target for malignant gliomas in future.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/patología , Neovascularización Patológica/genética , Neuropilina-1/genética , Interferencia de ARN , Regiones no Traducidas 3' , Adulto , Anciano , Anciano de 80 o más Años , Apoptosis/genética , Encéfalo/metabolismo , Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Perfilación de la Expresión Génica , Glioblastoma/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , MicroARNs/genética , Persona de Mediana Edad , FN-kappa B/metabolismo , Proteína Oncogénica v-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Transcriptoma
16.
Biochem Biophys Res Commun ; 501(4): 871-876, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29758196

RESUMEN

PURPOSE: Temozolomide (TMZ) is the most frequent adjuvant chemotherapy drug in gliomas. PDL1 expresses on various tumors, including gliomas, and anti-PD-1 antibodies have been approved for treating some tumors by FDA. This study was to evaluate the therapeutical potential of combined TMZ with anti-PD-1 antibody therapy for mouse orthotopic glioma model. METHODS: We performed C57BL/6 mouse orthotopic glioma model by stereotactic intracranial implantation of glioma cell line GL261, mice were randomly divided into four groups: (1) control group; (2) TMZ group; (3) anti-PD-1 antibody group; (4) TMZ combined with anti-PD-1 antibody group. Then the volume or size of tumor was assessed by 7.0 T MRI and immunohistochemistry, and the number of CD4 and CD8 infiltrating cells in brain tumor and spleen was evaluated by immunohistochemistry. Western blot was used to evaluate the expression of PDL1. Furthermore, Overall survival of each group mice was also evaluated. RESULTS: Overall survival was significantly improved in combined group compared to other groups (χ2 = 32.043, p < 0.01). The volume or size of tumor was significantly decreased in combined group compared with other groups (F = 42.771, P < 0.01). And the number of CD4 and CD8 infiltrating cells in brain tumor was also obviously increased in combined group (CD4 F = 45.67, P < 0.01; CD8 F = 53.75, P < 0.01). CONCLUSION: Anti-PD1 antibody combined with TMZ therapy for orthotopic mouse glioma model could significantly improve the survival time of tumor-bear mice. Thus, this study provides the effective preclinical evidence for support clinical chemotherapy combined with immunotherapy for glioma patients.


Asunto(s)
Anticuerpos Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Dacarbazina/análogos & derivados , Glioma/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/inmunología , Animales , Anticuerpos Antineoplásicos/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Terapia Combinada , Dacarbazina/farmacología , Dacarbazina/uso terapéutico , Modelos Animales de Enfermedad , Glioma/inmunología , Glioma/patología , Humanos , Masculino , Ratones Endogámicos C57BL , Temozolomida , Carga Tumoral/efectos de los fármacos
17.
Langmuir ; 34(21): 5955-5963, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29751726

RESUMEN

A new nanocomposite (SCZ), microspherical carbon (SC) loaded with nanoscale zerovalent iron (ZVI), was fabricated to efficiently remove hexavalent chromium (Cr(VI)) in water. Therein, SC was derived from waste carton through hydrothermal treatment after pretreatment of removing hemicellulose and lignin, and the optimal hydrothermal conditions (200 °C, hydrothermal time of 12 h) for the preparation of SC were obtained. Subsequently, SC could effectively load ZVI nanoparticles which displayed high dispersion on the surface of SC and in the pores among SC particles owing to steric hindrance effect. The obtained SCZ displayed a high removal efficiency of 100% within 5 h on Cr(VI) (20 mg/L), and the resultant SCZ-Cr could be conveniently separated from water because of its magnetism. Importantly, SCZ could be loaded in cardboard, and the obtained system could serve as a stable filter for removal of Cr(VI) in water. This work provides a cheap and effective method for Cr(VI) removal, which also greatly facilitates the recycling of waste carton.

18.
Langmuir ; 33(28): 7007-7014, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28665617

RESUMEN

A novel magnetic nanocomposite was synthesized using graphene oxide (GO), polyethylenimine (PEI), and Fe3O4 to removal hexavalent chromium (Cr(VI)) from water and soil. Therein, GO was functionalized with plenty of -NH2 by the modification of PEI through an amidation reaction, and the resulting GO/PEI reacted with FeSO4·7H2O and NaBH4 to obtain RGO/PEI/Fe3O4 (the optimal one is designated as ORPF) through an oxidation-reduction reaction. ORPF could effectively adsorb Cr(VI) through electrostatic attraction, and the adsorbed Cr(VI) ions were partially reduced to trivalent chromium (Cr(III)) with low toxicity by RGO (π electron). Afterward, the resulting ORPF-Cr could be conveniently removed from water with a magnet, achieving the maximum Cr(VI) removal capacity of 266.6 mg/g. Importantly, ORPF, once carried by sponge particles, could efficiently remove Cr(VI) from soil, and the resulting mixture could be facilely collected with a magnet on a filter net. Besides, the leaching experiment suggested that, when supported by filter paper, ORPF was able to decrease the number of leached Cr(VI) ions and meanwhile reduce them to Cr(III). This work provides a promising approach to remediate Cr(VI)-contaminated water and soil using a nanocomposite, which has a huge number of application prospects.

19.
Tumour Biol ; 37(10): 13777-13788, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27481513

RESUMEN

Glioma occurs due to multi-gene abnormalities. Neuropilin-1 (NRP-1), as a transmembrane protein, involves in glioma proliferation, invasion, and migration, as well as tumor angiogenesis. The cytoplasmic protein, GAIP/RGS19-interacting protein (GIPC1), could regulate the clathrin-vesicles trafficking and recycling. Here, we show that NRP-1 co-localizes and co-immunoprecipitates with GIPC1, and the C-terminal SEA-COOH motif of NRP-1 interacts specially with the named from three proteins: PSD-95 (a 95 kDa protein involved in signaling at the post-synaptic density), DLG (the Drosophila melanogaster Discs Large protein) and ZO-1 (the zonula occludens 1 protein involved in maintenance of epithelial polarity) (PDZ) domain of GIPC1 in glioma cells. Knockdown of GIPC1 by small interfering RNA (siRNA) significantly reduces the proliferation and invasion of glioma cells in vitro and increases its apoptosis. Furthermore, si-GIPC1 prevents the action of adaptor proteins adaptor protein, phosphotyrosine interaction, PH domain and leucine zipper containing 1 (APPL1) and p130Cas and inhibits the downstream kirsten rat sarcoma viral oncogene homolog (KRAS)-ERK signaling pathway. This study demonstrated that NRP-1/GIPC1 pathway plays a vital role in glioma progression, and it is a potential important target for multi-gene combined therapeutics.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Biomarcadores de Tumor/metabolismo , Glioma/patología , Neuropilina-1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Apoptosis , Western Blotting , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Glioma/metabolismo , Humanos , Técnicas para Inmunoenzimas , Inmunoprecipitación , Invasividad Neoplásica , Unión Proteica , ARN Interferente Pequeño/genética , Ratas , Transducción de Señal , Células Tumorales Cultivadas
20.
Phys Chem Chem Phys ; 18(11): 7820-8, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26912389

RESUMEN

A wormstructured and nanosized porous/hollow polyethyleneimine (PEI) functionalized Gd2O3/Fe3O4 composite was fabricated as a drug carrier and a bioimaging agent. The effect of PEI's chain length on the size and morphology of the nanoworm was investigated and the results indicated that the nanoworm modified with PEI (10,000 molecular weight) (designated as p-nanoworm) possessed a suitable size and a porous/hollow structure. Meanwhile, the p-nanoworm could effectively prevent the leakage of Gd ions under different pH conditions because of plenty of amino groups on their surface. Compared with contrast agents of clinical use, the p-nanoworm displayed MR enhancement with a high r1 relaxivity of 5.58 s(-1) mM(-1) per gadolinium atom. Cisplatin (CDDP), a clinical anticancer drug, could be easily loaded into the pores and lumen of the p-nanoworm (p-nanoworm-CDDP) and also controllably released by adjusting the pH value. Cell assay suggested that the p-nanoworm possessed satisfactory biocompatibility and meanwhile could promote CDDP uptake of HeLa cells and enhance the inhibition effect on HeLa cells. In addition, p-nanoworm-CDDP showed a negligible cytotoxicity on normal human cells, indicating that the side effect of CDDP is reduced. Thus, the p-nanoworm could have a potential application for the diagnosis and therapy of cancer.


Asunto(s)
Medios de Contraste , Sistemas de Liberación de Medicamentos , Imagen por Resonancia Magnética , Nanoestructuras , Polietileneimina/química , Microscopía Electrónica de Transmisión , Termogravimetría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA