Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 582
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Nature ; 618(7964): 374-382, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225988

RESUMEN

Cancer alters the function of multiple organs beyond those targeted by metastasis1,2. Here we show that inflammation, fatty liver and dysregulated metabolism are hallmarks of systemically affected livers in mouse models and in patients with extrahepatic metastasis. We identified tumour-derived extracellular vesicles and particles (EVPs) as crucial mediators of cancer-induced hepatic reprogramming, which could be reversed by reducing tumour EVP secretion via depletion of Rab27a. All EVP subpopulations, exosomes and principally exomeres, could dysregulate hepatic function. The fatty acid cargo of tumour EVPs-particularly palmitic acid-induced secretion of tumour necrosis factor (TNF) by Kupffer cells, generating a pro-inflammatory microenvironment, suppressing fatty acid metabolism and oxidative phosphorylation, and promoting fatty liver formation. Notably, Kupffer cell ablation or TNF blockade markedly decreased tumour-induced fatty liver generation. Tumour implantation or pre-treatment with tumour EVPs diminished cytochrome P450 gene expression and attenuated drug metabolism in a TNF-dependent manner. We also observed fatty liver and decreased cytochrome P450 expression at diagnosis in tumour-free livers of patients with pancreatic cancer who later developed extrahepatic metastasis, highlighting the clinical relevance of our findings. Notably, tumour EVP education enhanced side effects of chemotherapy, including bone marrow suppression and cardiotoxicity, suggesting that metabolic reprogramming of the liver by tumour-derived EVPs may limit chemotherapy tolerance in patients with cancer. Our results reveal how tumour-derived EVPs dysregulate hepatic function and their targetable potential, alongside TNF inhibition, for preventing fatty liver formation and enhancing the efficacy of chemotherapy.


Asunto(s)
Vesículas Extracelulares , Ácidos Grasos , Hígado Graso , Hígado , Neoplasias Pancreáticas , Animales , Ratones , Sistema Enzimático del Citocromo P-450/genética , Vesículas Extracelulares/metabolismo , Ácidos Grasos/metabolismo , Hígado Graso/tratamiento farmacológico , Hígado Graso/etiología , Hígado Graso/metabolismo , Hígado Graso/prevención & control , Hígado/metabolismo , Hígado/patología , Hígado/fisiopatología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Microambiente Tumoral , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo , Neoplasias Hepáticas/secundario , Humanos , Inflamación/metabolismo , Ácido Palmítico/metabolismo , Macrófagos del Hígado , Fosforilación Oxidativa , Proteínas rab27 de Unión a GTP/deficiencia
2.
Nat Immunol ; 17(8): 997-1004, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27322655

RESUMEN

Dysregulated expression of interleukin 17 (IL-17) in the colonic mucosa is associated with colonic inflammation and cancer. However, the cell-intrinsic molecular mechanisms by which IL-17 expression is regulated remain unclear. We found that deficiency in the ubiquitin ligase Itch led to spontaneous colitis and increased susceptibility to colon cancer. Itch deficiency in the TH17 subset of helper T cells, innate lymphoid cells and γδ T cells resulted in the production of elevated amounts of IL-17 in the colonic mucosa. Mechanistically, Itch bound to the transcription factor ROR-γt and targeted ROR-γt for ubiquitination. Inhibition or genetic inactivation of ROR-γt attenuated IL-17 expression and reduced spontaneous colonic inflammation in Itch(-/-) mice. Thus, we have identified a previously unknown role for Itch in regulating IL-17-mediated colonic inflammation and carcinogenesis.


Asunto(s)
Colitis/inmunología , Colon/patología , Neoplasias Colorrectales/inmunología , Mucosa Intestinal/inmunología , Linfocitos/inmunología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Células Th17/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Células Cultivadas , Sulfato de Dextran , Humanos , Interleucina-17/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
3.
EMBO J ; 41(18): e109288, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36052513

RESUMEN

Intercellular cross talk between cancer cells and stromal and immune cells is essential for tumor progression and metastasis. Extracellular vesicles and particles (EVPs) are a heterogeneous class of secreted messengers that carry bioactive molecules and that have been shown to be crucial for this cell-cell communication. Here, we highlight the multifaceted roles of EVPs in cancer. Functionally, transfer of EVP cargo between cells influences tumor cell growth and invasion, alters immune cell composition and function, and contributes to stromal cell activation. These EVP-mediated changes impact local tumor progression, foster cultivation of pre-metastatic niches at distant organ-specific sites, and mediate systemic effects of cancer. Furthermore, we discuss how exploiting the highly selective enrichment of molecules within EVPs has profound implications for advancing diagnostic and prognostic biomarker development and for improving therapy delivery in cancer patients. Altogether, these investigations into the role of EVPs in cancer have led to discoveries that hold great promise for improving cancer patient care and outcome.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Comunicación Celular , Humanos , Inmunoterapia , Neoplasias/patología , Microambiente Tumoral
4.
Plant J ; 117(1): 33-52, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37731059

RESUMEN

Chromatin in eukaryotes folds into a complex three-dimensional (3D) structure that is essential for controlling gene expression and cellular function and is dynamically regulated in biological processes. Studies on plant phosphorus signaling have concentrated on single genes and gene interactions. It is critical to expand the existing signaling pathway in terms of its 3D structure. In this study, low-Pi treatment led to greater chromatin volume. Furthermore, low-Pi stress increased the insulation score and the number of TAD-like domains, but the effects on the A/B compartment were not obvious. The methylation levels of target sites (hereafter as RdDM levels) peaked at specific TAD-like boundaries, whereas RdDM peak levels at conserved TAD-like boundaries shifted and decreased sharply. The distribution pattern of RdDM sites originating from the Helitron transposons matched that of genome-wide RdDM sites near TAD-like boundaries. RdDM pathway genes were upregulated in the middle or early stages and downregulated in the later stages under low-Pi conditions. The RdDM pathway mutant ddm1a showed increased tolerance to low-Pi stress, with shortened and thickened roots contributing to higher Pi uptake from the shallow soil layer. ChIP-seq results revealed that ZmDDM1A could bind to Pi- and root development-related genes. Strong associations were found between interacting genes in significantly different chromatin-interaction regions and root traits. These findings not only expand the mechanisms by which plants respond to low-Pi stress through the RdDM pathway but also offer a crucial framework for the analysis of biological issues using 3D genomics.


Asunto(s)
Cromatina , Zea mays , Cromatina/genética , Zea mays/genética , Metilación de ADN , Ensamble y Desensamble de Cromatina/genética , Silenciador del Gen , Regulación de la Expresión Génica de las Plantas
5.
Ann Neurol ; 96(1): 87-98, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38661228

RESUMEN

OBJECTIVE: Exposure to heavy metals has been reported to be associated with impaired cognitive function, but the underlying mechanisms remain unclear. This pilot study aimed to identify key heavy metal elements associated with cognitive function and further explore the potential mediating role of metal-related DNA methylation. METHODS: Blood levels of arsenic, cadmium, lead, copper, manganese, and zinc and genome-wide DNA methylations were separately detected in peripheral blood in 155 older adults. Cognitive function was evaluated using the Mini-Mental State Examination (MMSE). Least absolute shrinkage and selection operator penalized regression and Bayesian kernel machine regression were used to identify metals associated with cognitive function. An epigenome-wide association study examined the DNA methylation profile of the identified metal, and mediation analysis investigated its mediating role. RESULTS: The MMSE scores showed a significant decrease of 1.61 (95% confidence interval [CI]: -2.64, -0.59) with each 1 standard deviation increase in ln-transformed arsenic level; this association was significant in multiple-metal models and dominated the overall negative effect of 6 heavy metal mixture on cognitive function. Seventy-three differentially methylated positions were associated with blood arsenic (p < 1.0 × 10-5). The methylation levels at cg05226051 (annotated to TDRD3) and cg18886932 (annotated to GAL3ST3) mediated 24.8% and 25.5% of the association between blood arsenic and cognitive function, respectively (all p < 0.05). INTERPRETATION: Blood arsenic levels displayed a negative association with the cognitive function of older adults. This finding shows that arsenic-related DNA methylation alterations are critical partial mediators that may serve as potential biomarkers for further mechanism-related studies. ANN NEUROL 2024;96:87-98.


Asunto(s)
Cognición , Metilación de ADN , Epigenoma , Análisis de Mediación , Metales Pesados , Humanos , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Femenino , Masculino , Metales Pesados/sangre , Anciano , Cognición/efectos de los fármacos , Epigenoma/genética , Proyectos Piloto , Arsénico/sangre , Arsénico/toxicidad , Estudio de Asociación del Genoma Completo , Persona de Mediana Edad , Disfunción Cognitiva/genética , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/sangre , Anciano de 80 o más Años , Pruebas de Estado Mental y Demencia
6.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-37981661

RESUMEN

Functional constipation, a highly prevalent functional gastrointestinal disorder, often accompanies by mental and psychological disorders. Previous neuroimaging studies have demonstrated brain functional and structural alterations in patients with functional constipation. However, little is known about whether and how regional homogeneity is altered in these patients. Moreover, the potential genetic mechanisms associated with these alterations remain largely unknown. The study included 73 patients with functional constipation and 68 healthy controls, and regional homogeneity comparison was conducted to identify the abnormal spontaneous brain activities in patients with functional constipation. Using Allen Human Brain Atlas, we further investigated gene expression profiles associated with regional homogeneity alterations in functional constipation patients with partial least squares regression analysis applied. Compared with healthy controls, functional constipation patients demonstrated significantly decreased regional homogeneity in both bilateral caudate nucleus, putamen, anterior insula, thalamus and right middle cingulate cortex, supplementary motor area, and increased regional homogeneity in the bilateral orbitofrontal cortex. Genes related to synaptic signaling, central nervous system development, fatty acid metabolism, and immunity were spatially correlated with abnormal regional homogeneity patterns. Our findings showed significant regional homogeneity alterations in functional constipation patients, and the changes may be caused by complex polygenetic and poly-pathway mechanisms, which provides a new perspective on functional constipation's pathophysiology.


Asunto(s)
Imagen por Resonancia Magnética , Transcriptoma , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo , Mapeo Encefálico , Estreñimiento/diagnóstico por imagen , Estreñimiento/genética
7.
Cell Mol Life Sci ; 81(1): 48, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236296

RESUMEN

The MAP kinase ERK is important for neuronal plasticity underlying associative learning, yet specific molecular pathways for neuronal ERK activation are undetermined. RapGEF2 is a neuron-specific cAMP sensor that mediates ERK activation. We investigated whether it is required for cAMP-dependent ERK activation leading to other downstream neuronal signaling events occurring during associative learning, and if RapGEF2-dependent signaling impairments affect learned behavior. Camk2α-cre+/-::RapGEF2fl/fl mice with depletion of RapGEF2 in hippocampus and amygdala exhibit impairments in context- and cue-dependent fear conditioning linked to corresponding impairment in Egr1 induction in these two brain regions. Camk2α-cre+/-::RapGEF2fl/fl mice show decreased RapGEF2 expression in CA1 and dentate gyrus associated with abolition of pERK and Egr1, but not of c-Fos induction, following fear conditioning, impaired freezing to context after fear conditioning, and impaired cAMP-dependent long-term potentiation at perforant pathway and Schaffer collateral synapses in hippocampal slices ex vivo. RapGEF2 expression is largely eliminated in basolateral amygdala, also involved in fear memory, in Camk2α-cre+/-::RapGEF2fl/fl mice. Neither Egr1 nor c-fos induction in BLA after fear conditioning, nor cue-dependent fear learning, are affected by ablation of RapGEF2 in BLA. However, Egr1 induction (but not that of c-fos) in BLA is reduced after restraint stress-augmented fear conditioning, as is freezing to cue after restraint stress-augmented fear conditioning, in Camk2α-cre+/-::RapGEF2fl/fl mice. Cyclic AMP-dependent GEFs have been genetically associated as risk factors for schizophrenia, a disorder associated with cognitive deficits. Here we show a functional link between one of them, RapGEF2, and cognitive processes involved in associative learning in amygdala and hippocampus.


Asunto(s)
Miedo , Genes Inmediatos-Precoces , Factores de Intercambio de Guanina Nucleótido , Memoria , Transducción de Señal , Animales , Ratones , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Factores de Intercambio de Guanina Nucleótido/genética , Proteínas Proto-Oncogénicas c-fos
8.
BMC Genomics ; 25(1): 454, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720264

RESUMEN

BACKGROUND: In response to seasonal cold and food shortage, the Xizang plateau frogs, Nanorana parkeri (Anura: Dicroglossidae), enter a reversible hypometabolic state where heart rate and oxygen consumption in skeletal muscle are strongly suppressed. However, the effect of winter hibernation on gene expression and metabolic profiling in these two tissues remains unknown. In the present study, we conducted transcriptomic and metabolomic analyses of heart and skeletal muscle from summer- and winter-collected N. parkeri to explore mechanisms involved in seasonal hibernation. RESULTS: We identified 2407 differentially expressed genes (DEGs) in heart and 2938 DEGs in skeletal muscle. Enrichment analysis showed that shared DEGs in both tissues were enriched mainly in translation and metabolic processes. Of these, the expression of genes functionally categorized as "response to stress", "defense mechanisms", or "muscle contraction" were particularly associated with hibernation. Metabolomic analysis identified 24 and 22 differentially expressed metabolites (DEMs) in myocardium and skeletal muscle, respectively. In particular, pathway analysis showed that DEMs in myocardium were involved in the pentose phosphate pathway, glycerolipid metabolism, pyruvate metabolism, citrate cycle (TCA cycle), and glycolysis/gluconeogenesis. By contrast, DEMs in skeletal muscle were mainly involved in amino acid metabolism. CONCLUSIONS: In summary, natural adaptations of myocardium and skeletal muscle in hibernating N. parkeri involved transcriptional alterations in translation, stress response, protective mechanisms, and muscle contraction processes as well as metabolic remodeling. This study provides new insights into the transcriptional and metabolic adjustments that aid winter survival of high-altitude frogs N. parkeri.


Asunto(s)
Anuros , Hibernación , Metabolómica , Músculo Esquelético , Animales , Hibernación/genética , Hibernación/fisiología , Músculo Esquelético/metabolismo , Anuros/genética , Anuros/metabolismo , Anuros/fisiología , Miocardio/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Estaciones del Año , Metaboloma , Tibet
9.
Planta ; 260(1): 22, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847958

RESUMEN

MAIN CONCLUSION: The SiMBR genes in foxtail millet were identified and studied. Heterologous expression of SiMBR2 in Arabidopsis can improve plant tolerance to drought stress by decreasing the level of reactive oxygen species. Foxtail millet (Setaria italica L.), a C4 crop recognized for its exceptional resistance to drought stress, presents an opportunity to improve the genetic resilience of other crops by examining its unique stress response genes and understanding the underlying molecular mechanisms of drought tolerance. In our previous study, we identified several genes linked to drought stress by transcriptome analysis, including SiMBR2 (Seita.7G226600), a member of the MED25 BINDING RING-H2 PROTEIN (MBR) gene family, which is related to protein ubiquitination. Here, we have identified ten SiMBR genes in foxtail millet and conducted analyses of their structural characteristics, chromosomal locations, cis-acting regulatory elements within their promoters, and predicted transcription patterns specific to various tissues or developmental stages using bioinformatic approaches. Further investigation of the stress response of SiMBR2 revealed that its transcription is induced by treatments with salicylic acid and gibberellic acid, as well as by salt and osmotic stresses, while exposure to high or low temperatures led to a decrease in its transcription levels. Heterologous expression of SiMBR2 in Arabidopsis thaliana enhanced the plant's tolerance to water deficit by reducing the accumulation of reactive oxygen species under drought stress. In summary, this study provides support for exploring the molecular mechanisms associated with drought resistance of SiMBR genes in foxtail millet and contributing to genetic improvement and molecular breeding in other crops.


Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Setaria (Planta) , Estrés Fisiológico , Setaria (Planta)/genética , Setaria (Planta)/fisiología , Setaria (Planta)/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/fisiología , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequías , Plantas Modificadas Genéticamente , Familia de Multigenes , Regiones Promotoras Genéticas/genética , Especies Reactivas de Oxígeno/metabolismo
10.
Int J Obes (Lond) ; 48(6): 849-858, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38341506

RESUMEN

OBJECTIVE: Fatty acids play a critical role in the proper functioning of the brain. This study investigated the effects of a high-fat (HF) diet on brain fatty acid profiles of offspring exposed to maternal gestational diabetes mellitus (GDM). METHODS: Insulin receptor antagonist (S961) and HF diet were used to establish the GDM animal model. Brain fatty acid profiles of the offspring mice were measured by gas chromatography at weaning and adulthood. Protein expressions of the fatty acid transport pathway Wnt3/ß-catenin and the target protein major facilitator superfamily domain-containing 2a (MFSD2a) were measured in the offspring brain by Western blot. RESULTS: Maternal GDM increased the body weight of male offspring (P < 0.05). In weaning offspring, factorial analysis showed that maternal GDM increased the monounsaturated fatty acid (MUFA) percentage of the weaning offspring's brain (P < 0.05). Maternal GDM decreased offspring brain arachidonic acid (AA), but HF diet increased brain linoleic acid (LA) (P < 0.05). Maternal GDM and HF diet reduced offspring brain docosahexaenoic acid (DHA), and the male offspring had higher DHA than the female offspring (P < 0.05). In adult offspring, factorial analysis showed that HF diet increased brain MUFA in offspring, and male offspring had higher brain MUFA than female offspring (P < 0.05). The HF diet increased brain LA in the offspring. Male offspring had higher level of AA than female offspring (P < 0.05). HF diet reduced DHA in the brains of female offspring. The brain protein expression of ß-catenin and MFSD2a in both weaning and adult female offspring was lower in the HF + GDM group than in the CON group (P < 0.05). CONCLUSIONS: Maternal GDM increased the susceptibility of male offspring to HF diet-induced obesity. HF diet-induced adverse brain fatty acid profiles in both male and female offspring exposed to GDM.


Asunto(s)
Encéfalo , Diabetes Gestacional , Dieta Alta en Grasa , Ácidos Grasos , Efectos Tardíos de la Exposición Prenatal , Animales , Embarazo , Femenino , Diabetes Gestacional/metabolismo , Ratones , Dieta Alta en Grasa/efectos adversos , Encéfalo/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Masculino , Ácidos Grasos/metabolismo , Modelos Animales de Enfermedad , Fenómenos Fisiologicos Nutricionales Maternos
11.
J Transl Med ; 22(1): 48, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216927

RESUMEN

BACKGROUND: Muscle-invasive bladder cancer (MIBC) is a highly aggressive disease with a poor prognosis. B cells are crucial factors in tumor suppression, and tertiary lymphoid structures (TLSs) facilitate immune cell recruitment to the tumor microenvironment (TME). However, the function and mechanisms of tumor-infiltrating B cells and TLSs in MIBC need to be explored further. METHODS: We performed single-cell RNA sequencing analysis of 11,612 B cells and 55,392 T cells from 12 bladder cancer patients and found naïve B cells, proliferating B cells, plasma cells, interferon-stimulated B cells and germinal center-associated B cells, and described the phenotype, gene enrichment, cell-cell communication, biological processes. We utilized immunohistochemistry (IHC) and immunofluorescence (IF) to describe TLSs morphology in MIBC. RESULTS: The interferon-stimulated B-cell subtype (B-ISG15) and germinal center-associated B-cell subtypes (B-LMO2, B-STMN1) were significantly enriched in MIBC. TLSs in MIBC exhibited a distinct follicular structure characterized by a central region of B cells resembling a germinal center surrounded by T cells. CellChat analysis showed that CXCL13 + T cells play a pivotal role in recruiting CXCR5 + B cells. Cell migration experiments demonstrated the chemoattraction of CXCL13 toward CXCR5 + B cells. Importantly, the infiltration of the interferon-stimulated B-cell subtype and the presence of TLSs correlated with a more favorable prognosis in MIBC. CONCLUSIONS: The study revealed the heterogeneity of B-cell subtypes in MIBC and suggests a pivotal role of TLSs in MIBC outcomes. Our study provides novel insights that contribute to the precision treatment of MIBC.


Asunto(s)
Estructuras Linfoides Terciarias , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Linfocitos B , Pronóstico , Músculos/patología , Interferones , Microambiente Tumoral
12.
Plant Cell ; 33(5): 1554-1573, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-33570606

RESUMEN

How raffinose (Raf) family oligosaccharides, the major translocated sugars in the vascular bundle in cucurbits, are hydrolyzed and subsequently partitioned has not been fully elucidated. By performing reciprocal grafting of watermelon (Citrullus lanatus) fruits to branch stems, we observed that Raf was hydrolyzed in the fruit of cultivar watermelons but was backlogged in the fruit of wild ancestor species. Through a genome-wide association study, the alkaline alpha-galactosidase ClAGA2 was identified as the key factor controlling stachyose and Raf hydrolysis, and it was determined to be specifically expressed in the vascular bundle. Analysis of transgenic plants confirmed that ClAGA2 controls fruit Raf hydrolysis and reduces sugar content in fruits. Two single-nucleotide polymorphisms (SNPs) within the ClAGA2 promoter affect the recruitment of the transcription factor ClNF-YC2 (nuclear transcription factor Y subunit C) to regulate ClAGA2 expression. Moreover, this study demonstrates that C. lanatus Sugars Will Eventually Be Exported Transporter 3 (ClSWEET3) and Tonoplast Sugar Transporter (ClTST2) participate in plasma membrane sugar transport and sugar storage in fruit cell vacuoles, respectively. Knocking out ClAGA2, ClSWEET3, and ClTST2 affected fruit sugar accumulation. Genomic signatures indicate that the selection of ClAGA2, ClSWEET3, and ClTST2 for carbohydrate partitioning led to the derivation of modern sweet watermelon from non-sweet ancestors during domestication.


Asunto(s)
Evolución Biológica , Citrullus/metabolismo , Frutas/metabolismo , Oligosacáridos/metabolismo , Azúcares/metabolismo , Alelos , Secuencia de Bases , Transporte Biológico , Membrana Celular/metabolismo , Citrullus/genética , Regulación de la Expresión Génica de las Plantas , Hexosas/metabolismo , Hidrólisis , Modelos Biológicos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
J Nutr ; 154(2): 590-599, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38159812

RESUMEN

BACKGROUND: Polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA), are critical for proper fetal brain growth and development. Gestational diabetes mellitus (GDM) could affect maternal-fetal fatty acid metabolism. OBJECTIVE: This study aimed to explore the effect of GDM and high-fat (HF) diet on the DHA transport signaling pathway in the placenta-brain axis and fatty acid concentrations in the fetal brain. METHODS: Insulin receptor antagonist (S961) and HF diet were used to establish an animal model of GDM. Eighty female C57BL/6J mice were randomly divided into control (CON), GDM, HF, and HF+GDM groups. The fatty acid profiles of the maternal liver and fetal brain were analyzed by gas chromatography. In addition, we analyzed the protein amounts of maternal liver fatty acid desaturase (FADS1/3), elongase (ELOVL2/5) and the regulatory factor sterol-regulatory element-binding protein (SREBP)-1c, and the DHA transport signaling pathway (Wnt3/ß-catenin/MFSD2a) of the placenta and fetal brain using western blotting. RESULTS: GDM promoted the decrease of maternal liver ELOVL2, ELOVL5, and SREBP-1c. Accordingly, we observed a significant decrease in the amount of maternal liver arachidonic acid (AA), DHA, and total n-3 PUFA and n-6 PUFA induced by GDM. GDM also significantly decreased the amount of DHA and n-3 PUFA in the fetal brain. GDM downregulated the Wnt3/ß-catenin/MFSD2a signaling pathway, which transfers n-3 PUFA in the placenta and fetal brain. The HF diet increased n-6 PUFA amounts in the maternal liver, correspondingly increasing linoleic acid, gamma-linolenic acid, AA, and total n-6 PUFA in the fetal brain, but decreased DHA amount in the fetal brain. However, HF diet only tended to decrease placental ß-catenin and MFSD2a amounts (P = 0.074 and P = 0.098, respectively). CONCLUSIONS: Maternal GDM could affect the fatty acid profile of the fetal brain both by downregulating the Wnt3/ß-catenin/MFSD2a pathway of the placental-fetal barrier and by affecting maternal fatty acid metabolism.


Asunto(s)
Diabetes Gestacional , Ácidos Grasos Omega-3 , Humanos , Animales , Ratones , Femenino , Embarazo , Diabetes Gestacional/metabolismo , Ácidos Grasos/metabolismo , Placenta/metabolismo , beta Catenina/metabolismo , Ratones Endogámicos C57BL , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Ácido Araquidónico , Encéfalo/metabolismo
14.
Theor Appl Genet ; 137(7): 172, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935162

RESUMEN

Phosphorus (P) is an essential element for plant growth, and its deficiency can cause decreased crop yield. This study systematically evaluated the low-phosphate (Pi) response traits in a large population at maturity and seedling stages, and explored candidate genes and their interrelationships with specific traits. The results revealed a greater sensitivity of seedling maize to low-Pi stress compared to that at maturity stage. The phenotypic response patterns to low-Pi stress at different stages were independent. Chlorophyll content was found to be a potential indicator for screening low-Pi-tolerant materials in the field. A total of 2900 and 1446 significantly associated genes at the maturity and seedling stages were identified, respectively. Among these genes, 972 were uniquely associated with maturity traits, while 330 were specifically detected at the seedling stage under low-Pi stress. Moreover, 768 and 733 genes were specifically associated with index values (low-Pi trait/normal-Pi trait) at maturity and seedling stage, respectively. Genetic network diagrams showed that the low-Pi response gene Zm00001d022226 was specifically associated with multiple primary P-related traits under low-Pi conditions. A total of 963 out of 2966 genes specifically associated with traits under low-Pi conditions or index values were found to be induced by low-Pi stress. Notably, ZmSPX4.1 and ZmSPX2 were sharply up-regulated in response to low-Pi stress across different lines or tissues. These findings advance our understanding of maize's response to low-Pi stress at different developmental stages, shedding light on the genes and pathways implicated in this response.


Asunto(s)
Fenotipo , Fósforo , Plantones , Estrés Fisiológico , Zea mays , Zea mays/genética , Zea mays/crecimiento & desarrollo , Plantones/genética , Plantones/crecimiento & desarrollo , Estrés Fisiológico/genética , Fósforo/metabolismo , Genes de Plantas , Estudio de Asociación del Genoma Completo , Clorofila/metabolismo , Sitios de Carácter Cuantitativo , Regulación de la Expresión Génica de las Plantas , Estudios de Asociación Genética , Polimorfismo de Nucleótido Simple
15.
Theor Appl Genet ; 137(7): 158, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864891

RESUMEN

Examining the connection between P and starch-related signals can help elucidate the balance between nutrients and yield. This study utilized 307 diverse maize inbred lines to conduct multi-year and multi-plot trials, aiming to explore the relationship among P content, starch content, and 100-kernel weight (HKW) of mature grains. A significant negative correlation was found between P content and both starch content and HKW, while starch content showed a positive correlation with HKW. The starch granules in grains with high-P and low-starch content (HPLS) were significantly smaller compared to grains with low-P high-starch content (LPHS). Additionally, mian04185-4 (HPLS) exhibited irregular and loosely packed starch granules. A significant decrease in ZmPHOs genes expression was detected in the HPLS line ZNC442 as compared to the LPHS line SCML0849, while no expression difference was observed in AGPase encoding genes between these two lines. The down-regulated genes in ZNC442 grains were enriched in nucleotide sugar and fatty acid anabolic pathways, while up-regulated genes were enriched in the ABC transporters pathway. An accelerated breakdown of fat as the P content increased was also observed. This implied that HPLS was resulted from elevated lipid decomposition and inadequate carbon sources. The GWAS analysis identified 514 significantly associated genes, out of which 248 were differentially expressed. Zm00001d052392 was found to be significantly associated with P content/HKW, exhibiting high expression in SCML0849 but almost no expression in ZNC442. Overall, these findings suggested new approaches for achieving a P-yield balance through the manipulation of lipid metabolic pathways in grains.


Asunto(s)
Fósforo , Almidón , Transcriptoma , Zea mays , Zea mays/genética , Zea mays/metabolismo , Almidón/metabolismo , Fósforo/metabolismo , Grano Comestible/genética , Grano Comestible/metabolismo , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Fenotipo
16.
Sensors (Basel) ; 24(7)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38610445

RESUMEN

Cardiovascular diseases pose a long-term risk to human health. This study focuses on the rich-spectrum mechanical vibrations generated during cardiac activity. By combining Fourier series theory, we propose a multi-frequency vibration model for the heart, decomposing cardiac vibration into frequency bands and establishing a systematic interpretation for detecting multi-frequency cardiac vibrations. Based on this, we develop a small multi-frequency vibration sensor module based on flexible polyvinylidene fluoride (PVDF) films, which is capable of synchronously collecting ultra-low-frequency seismocardiography (ULF-SCG), seismocardiography (SCG), and phonocardiography (PCG) signals with high sensitivity. Comparative experiments validate the sensor's performance and we further develop an algorithm framework for feature extraction based on 1D-CNN models, achieving continuous recognition of multiple vibration features. Testing shows that the recognition coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) of the 8 features are 0.95, 2.18 ms, and 4.89 ms, respectively, with an average prediction speed of 60.18 us/point, meeting the re-quirements for online monitoring while ensuring accuracy in extracting multiple feature points. Finally, integrating the vibration model, sensor, and feature extraction algorithm, we propose a dynamic monitoring system for multi-frequency cardiac vibration, which can be applied to portable monitoring devices for daily dynamic cardiac monitoring, providing a new approach for the early diagnosis and prevention of cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Vibración , Humanos , Corazón , Algoritmos , Fonocardiografía
17.
Sensors (Basel) ; 24(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38931601

RESUMEN

Muscles play an indispensable role in human life. Surface electromyography (sEMG), as a non-invasive method, is crucial for monitoring muscle status. It is characterized by its real-time, portable nature and is extensively utilized in sports and rehabilitation sciences. This study proposed a wireless acquisition system based on multi-channel sEMG for objective monitoring of grip force. The system consists of an sEMG acquisition module containing four-channel discrete terminals and a host computer receiver module, using Bluetooth wireless transmission. The system is portable, wearable, low-cost, and easy to operate. Leveraging the system, an experiment for grip force prediction was designed, employing the bald eagle search (BES) algorithm to enhance the Random Forest (RF) algorithm. This approach established a grip force prediction model based on dual-channel sEMG signals. As tested, the performance of acquisition terminal proceeded as follows: the gain was up to 1125 times, and the common mode rejection ratio (CMRR) remained high in the sEMG signal band range (96.94 dB (100 Hz), 84.12 dB (500 Hz)), while the performance of the grip force prediction algorithm had an R2 of 0.9215, an MAE of 1.0637, and an MSE of 1.7479. The proposed system demonstrates excellent performance in real-time signal acquisition and grip force prediction, proving to be an effective muscle status monitoring tool for rehabilitation, training, disease condition surveillance and scientific fitness applications.


Asunto(s)
Algoritmos , Electromiografía , Fuerza de la Mano , Electromiografía/métodos , Humanos , Fuerza de la Mano/fisiología , Masculino , Procesamiento de Señales Asistido por Computador , Adulto , Dispositivos Electrónicos Vestibles , Músculo Esquelético/fisiología , Monitoreo Fisiológico/métodos , Monitoreo Fisiológico/instrumentación , Tecnología Inalámbrica/instrumentación
18.
J Clin Nurs ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951120

RESUMEN

AIM: We aimed to assess the level of knowledge, attitudes and practices regarding airway clearance among nurses and explore the factors affecting the knowledge, attitudes and practices. DESIGN: A questionnaire-based cross-sectional study. BACKGROUND: Airway clearance is an important method of eliminating excess secretions. In neuroscience nursing, nurses are important executors of airway management, and their knowledge, attitudes and practices can influence the effectiveness of airway clearance. METHODS: This study was conducted from July to September 2023 in four hospitals in Jiangsu Province, China. A structured questionnaire about airway clearance was designed and used to collect the data. The nurses used this questionnaire to self-rate. The STROBE checklist for cross-sectional studies was followed. RESULTS: The age, work experience, highest educational attainment and technical title of the nurses can significantly influence their knowledge. The age, highest educational attainment and technical title of the nurses can significantly impact their attitudes. Practice scores were significantly influenced by age, work experience, technical title, whether the nurses had received any training on airway clearance techniques, and whether the department developed procedures for implementing the airway clearance technology. Nurses' attitudes were significantly associated with knowledge and practice, and there was no significant correlation between knowledge and practice. CONCLUSION: This study showed that age, work experience, highest educational attainment and training were related to knowledge, attitudes and practices. These findings suggest that nursing managers can conduct airway clearance training according to age group, working experience and education level of the nurses. PATIENT OR PUBLIC CONTRIBUTION: No patient or public contribution. IMPACT: The findings show that the level of knowledge, attitudes and practices related to airway clearance in neuroscience nursing among nurses were acceptable, which means that nurses can better perform airway management on patients. These findings serve as a significant reference for designing an airway clearance education for nurses and meet the needs of nurses in clinical nursing practice.

19.
Molecules ; 29(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731398

RESUMEN

(1) Background: Alzheimer's disease (AD) is characterized by ß-amyloid (Aß) peptide accumulation and mitochondrial dysfunction during the early stage of disease. PINK1 regulates the balance between mitochondrial homeostasis and bioenergy supply and demand via the PINK1/Parkin pathway, Na+/Ca2+ exchange, and other pathways. (2) Methods: In this study, we synthesized positively charged carbon dots (CA-PEI CDs) using citric acid (CA) and polyethyleneimine (PEI) and used them as vectors to express PINK1 genes in the APP/PS1-N2a cell line to determine mitochondrial function, electron transport chain (ETC) activity, and ATP-related metabolomics. (3) Results: Our findings showed that the CA-PEI CDs exhibit the characteristics of photoluminescence, low toxicity, and concentrated DNA. They are ideal biological carriers for gene delivery. PINK1 overexpression significantly increased the mitochondrial membrane potential in APP/PS1-N2a cells and reduced reactive-oxygen-species generation and Aß1-40 and Aß1-42 levels. An increase in the activity of NADH ubiquinone oxidoreductase (complex I, CI) and cytochrome C oxidase (complex IV, CIV) induces the oxidative phosphorylation of mitochondria, increasing ATP generation. (4) Conclusions: These findings indicate that the PINK gene can alleviate AD by increasing bioenergetic metabolism, reducing Aß1-40 and Aß1-42, and increasing ATP production.


Asunto(s)
Adenosina Trifosfato , Carbono , Ácido Cítrico , Polietileneimina , Proteínas Quinasas , Puntos Cuánticos , Animales , Humanos , Ratones , Adenosina Trifosfato/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Carbono/química , Línea Celular , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Polietileneimina/química , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Puntos Cuánticos/química , Especies Reactivas de Oxígeno/metabolismo
20.
J Neurosci ; 42(11): 2327-2343, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35091501

RESUMEN

It is well established that glutamate plays an important role in drug-induced and cue-induced reinstatement of drug seeking. However, the role of glutamate in drug reward is unclear. In this study, we systemically evaluated the effects of multiple glutamate transporter (GLT) inhibitors on extracellular glutamate and dopamine (DA) in the nucleus accumbens (NAc), intravenous cocaine self-administration, intracranial brain-stimulation reward (BSR), and reinstatement of cocaine seeking in male and female rats. Among the five GLT inhibitors we tested, TFB-TBOA was the most potent. Microinjections of TFB-TBOA into the NAc, but not the ventral tegmental area (VTA), or dorsal striatum (DS), dose-dependently inhibited cocaine self-administration under fixed-ratio and progressive-ratio (PR) reinforcement schedules, shifted the cocaine dose-response curve downward, and inhibited intracranial BSR. Selective downregulation of astrocytic GLT-1 expression in the NAc by GLT-1 antisense oligonucleotides also inhibited cocaine self-administration. The reduction in cocaine self-administration following TFB-TBOA administration was NMDA GluN2B receptor dependent, and rats self-administering cocaine showed upregulation of GluN2B expression in NAc DA- and cAMP-regulated phosphoprotein 32 (DARPP-32)-positive medium-spiny neurons (MSNs). In contrast, TFB-TBOA, when locally administered into the NAc, VTA, or ventral pallidum (VP), dose-dependently reinstated cocaine-seeking behavior. Intra-NAc TFB-TBOA-evoked drug-seeking was long-lasting and NMDA/AMPA receptor dependent. These findings, for the first time, indicate that glutamate in the NAc negatively regulates cocaine's rewarding effects, while an excess of glutamate in multiple brain regions can trigger reinstatement of drug-seeking behavior.SIGNIFICANCE STATEMENT It is well known that glutamate plays an important role in relapse to drug seeking. However, the role of glutamate in drug reward is less clear. Here, we report that TFB-TBOA, a highly potent glutamate transporter (GLT) inhibitor, dose-dependently elevates extracellular glutamate and inhibits cocaine self-administration and brain-stimulation reward (BSR), when administered locally into the nucleus accumbens (NAc), but not other brain regions. Mechanistic assays indicate that cocaine self-administration upregulates NMDA-GluN2B receptor subtype expression in striatal dopaminoceptive neurons and activation of GluN2B by TFB-TBOA-enhanced glutamate inhibits cocaine self-administration. TFB-TBOA also reinstates cocaine-seeking behavior when administered into the NAc, ventral tegmental area (VTA), and ventral pallidum (VP). These findings demonstrate that glutamate differentially regulates cocaine reward versus relapse, reducing cocaine reward, while potentiating relapse to cocaine seeking.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Astrocitos/metabolismo , Cocaína/farmacología , Trastornos Relacionados con Cocaína/metabolismo , Femenino , Ácido Glutámico/metabolismo , Masculino , N-Metilaspartato/farmacología , Núcleo Accumbens , Ratas , Receptores de N-Metil-D-Aspartato , Autoadministración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA