Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Environ Manage ; 352: 119910, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38190782

RESUMEN

The recycling and utilization of phosphorus resources in sludge is becoming increasingly important. In this study, we compared the conversion of phosphorus and toxic metal passivation effects of different Ca additives under oxygen-rich combustion conditions and elucidated their specific mechanisms of action. The experimental results indicated that four Ca-based additives improved the recovery rate of total phosphorus, and promoted the generation of stable apatite phosphorus (AP). The effect of CaCl2 and CaO was greater than that of Ca(OH)2 and CaSO4. CaCl2 promoted the formation of Ca3(PO4)2 and Ca2P2O7, and CaSO4 improved the conversion of AlPO4 to Ca(H2PO4)2 with increasing temperature. The conversion capacity of CaO on non-apatite inorganic phosphorus to AP was greater than that of Ca(OH)2, and more CaH2P2O7, Ca(PO3)2, and Ca-Al-P minerals were found. Toxic metal percentages decreased after sludge incineration with CaCl2. Compared with CaO and Ca(OH)2, the toxic metal adsorption effect of CaSO4 was more significant. The influence of Ca additives on the conversion of Zn into stable components was as follows: CaCl2 > Ca(OH)2 > CaO > CaSO4. Ca additives reduced the toxic metal contamination level and ecological risk index values, and the order of toxic metal contamination levels was Ni > Zn > Cr > Cu > Mn. The experiment confirmed the conversion of phosphorus and the toxic metal passivation effect of Ca additives during oxy-fuel combustion of sludge, which is beneficial for its resource utilization.


Asunto(s)
Metales Pesados , Fósforo , Aguas del Alcantarillado , Cloruro de Calcio , Minerales , Incineración
2.
Environ Sci Technol ; 57(44): 16873-16883, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37874039

RESUMEN

Cadmium (Cd) stable isotopes provide a novel technique to investigate the fate of Cd in the environment, but challenges exist for tracing the sources in the plants. We performed individual rice leaf and root exposures to dry and wet deposition using customized open-top chambers (OTCs) in the greenhouse and in the field next to a smelter, respectively. The field experiment also included a control without Cd deposition and a "full" treatment. The exposure experiments and isotope signatures showed that leaves can directly take up atmospheric Cd and then translocate within rice plants to other tissues, contributing 52-70% of Cd in grains, which exceeded the contribution (30-48%) by root exposure. The Cd isotopes in leaves, nodes, internodes, and grains demonstrate that roots preferentially take up Cd from wet deposition, but leaves favor uptake of Cd from dry deposition. The Cd uptake by leaves is redistributed via nodes, allowing for upward transport to the grains but preventing downward transport to the roots. Leaves favor uptake of heavy isotopes from atmospheric deposition (ΔCd114/110Leaf-Dust: 0.10 ± 0.02‰) but retain light isotopes and transport heavy isotopes to the nodes and further to grains. These findings highlight the contribution of atmospheric deposition to rice and Cd isotopes as a useful tracer for quantifying sources in plants when different isotopic compositions are in sources.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio , Hojas de la Planta/química , Isótopos/análisis , Suelo
3.
Ecotoxicol Environ Saf ; 263: 115340, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37595346

RESUMEN

As a widely used herbicide, atrazine and its two main metabolites of deethylatrazine (DEA) and deisopropylatrazine (DIA) pose an exposure risk for both human beings and animals in the environment. In this study, Caenorhabditis elegans was selected as an in vivo model to compare the toxicity between atrazine and its main metabolites. Upon exposure from the larval stage L1 to adult day 3, both DEA and DIA showed less toxicity on locomotion and reproduction compared with atrazine at concentration of 0.001, 0.01 0.1 and 1 mg/L for parental generation. In addition, exposure to DEA and DIA at concentration of 0.1 mg/L also induced less transgenerational toxicity on locomotion than exposure to atrazine for both parental generation and offspring of F1-F4. Accordingly, exposure to DEA and DIA caused less ROS production and alteration in the expression of some genes (mev-1, gas-1, and clk-1) governing oxidative stress compared to atrazine. Meanwhile, DEA and DIA lead to less increase in expression of superoxide dismutase genes (sod-2 and sod-3) and SOD-3::GFP than atrazine. Moreover, atrazine and its two main metabolites differentially activated the daf-16 encoding FOXO transcriptional factor in insulin signaling pathway during the control of downstream target of SOD-3. Overall, our results highlighted the important role of oxidative stress and anti-oxidation related molecular signals in mediating toxicity of atrazine, DEA and DIA, which provided a novel explanation for the different toxicity between atrazine and its main metabolites.


Asunto(s)
Atrazina , Adulto , Animales , Humanos , Atrazina/toxicidad , Caenorhabditis elegans/genética , Oxidación-Reducción , Estrés Oxidativo , Superóxido Dismutasa
4.
J Environ Manage ; 344: 118705, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37562253

RESUMEN

Antibiotics have attracted widespread attention around the world because they are ubiquitous in the environment and can lead to antibiotic-resistant microbes developing and pose ecotoxicological risks. In this study, we determined the spatiotemporal distributions of 39 antibiotics in 19 drinking water sources in Jiangsu area of the lower Yangtze River and attempted to identify the sources of the antibiotics and to prioritize the antibiotics. The total antibiotic concentrations in spring and fall were 234.56-6515.99 and 151.12-2562.59 ng/L, respectively. In spring, the total antibiotic concentration gradually increased from upstream to downstream. In fall, the antibiotic concentration did not markedly vary upstream to downstream (total concentrations 151.12-432.17 ng/L) excluding site S9 and S10. Analysis using a positive matrix factorization (PMF) model indicated that the antibiotics had four main sources. Pharmaceutical wastewater was the main source, contributing 34.1% and 41.2% of total antibiotics in spring and fall, respectively, and domestic wastewater was the second most important source, contributing 24.4% and 43% of total antibiotics in spring and fall, respectively. Pharmaceutical wastewater was the main source from midstream to downstream, but the other sources made different contributions in different areas because of the various ranges of human activities. An ecological risk assessment was performed. Stronger risks were posed by antibiotics in spring than fall, and fluoroquinolone antibiotics posed the strongest risks. Optimized risk quotients indicated that norfloxacin was a high-risk contaminant. An assessment of the risk of resistance development indicated that norfloxacin, ciprofloxacin, and enrofloxacin posed moderate to high risks of resistance development and should be prioritized for risk management. The results of this study are important reference data for identifying key sources of antibiotics and developing strategies to manage antibiotic contamination in similar areas.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Humanos , Antibacterianos/análisis , Norfloxacino , Aguas Residuales , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Preparaciones Farmacéuticas , China
5.
Waste Manag ; 179: 1-11, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38442433

RESUMEN

The application of in-situ aeration technology in landfills has been reported to promote fungal growth, but the community diversity and function of fungi in the aerated landfill system remain unknown. This study firstly investigated an in-situ aerated remediation landfill site to characterize the fungal community diversity in refuse. And to further reveal the fungal involvement in the nitrogen cycling system, laboratory-scale simulated aerated landfill reactors were then constructed. The results in the aerated landfill site showed a significant correlation between fungal community structure and ammonia nitrogen content in the refuse. Dominant fungi in the fungal community included commonly found environmental fungi such as Fusarium, Aspergillus, Gibberella, as well as unique fungi in the aerated system like Chaetomium. In the laboratory-scale aerated landfill simulation experiments, the fungal system was constructed using bacterial inhibitor, and nitrogen balance analysis confirmed the significant role of fungal nitrification in the nitrogen cycling process. When ammonia nitrogen was not readily available, fungi converted organic nitrogen to nitrate, serving as the main nitrification mechanism in the system, with a contribution rate ranging from 62.71 % to 100 % of total nitrification. However, when ammonia nitrogen was present in the system, autotrophic nitrification became the main mechanism, and the contribution of fungal nitrification to total nitrification was only 15.96 %. Additionally, fungi were capable of directly utilizing nitrite for nitrate production with a rate of 4.65 mg L-1 d-1. This research article contributes to the understanding of the importance of fungi in the aerated landfill systems, filling a gap in knowledge.


Asunto(s)
Micobioma , Contaminantes Químicos del Agua , Nitrógeno , Amoníaco , Nitratos , Nitrificación , Instalaciones de Eliminación de Residuos , Reactores Biológicos , Desnitrificación
6.
Waste Manag ; 183: 174-183, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38759275

RESUMEN

Solid-phase residues from pyrolysis of oily wastes (OS) are widely used due to their rich pore structure and strong adsorption capacity. In this study, pyrolysis residues (OS-P) were obtained from the pyrolysis treatment of four typical OS in Karamay, Xinjiang. The results indicate that the crystalline substances in OS-P mainly were SiO2, BaSO4, and graphite. The heavy metals of OS-P were higher than that of OS in the following order: Zn > Cu > Ni > Cr > Pb > Cd. The results of the improvement of Community Bureau of Reference (BCR) sequential extraction showed that the proportion of Cu, Ni and Cr in OS1-P in the residual fraction was higher than that of the other three OS. The residual fraction of Cu, Ni, and Cr in OS1-P increased from 16.0 %, 30.0 %, and 11.0 % to 66.1 %, 81.9 %, and 89.2 %, respectively. After pyrolysis treatment, the leaching concentration of heavy metals in the residue was reduced. Referring to the requirements for heavy metal control limits (GB 4284-2018), all heavy metals in OS-P showed low risk. Their potential ecological risk indices were 4.11, 3.13, 4.87 and 5.35, respectively, indicating that the potential ecological hazards of heavy metals from OS-P were slight. There was no significant effect on the histopathological changes of kidney, lung, liver, ovary and testis of mice, showing that the rational use of OS-P in production will not produce toxic effects on target animals. Based on risk assessment and safety evaluation, the application of OS-P is controllable, safe and reliable for resource utilization.


Asunto(s)
Metales Pesados , Pirólisis , Metales Pesados/análisis , Medición de Riesgo/métodos , Animales , Ratones , China , Eliminación de Residuos/métodos
7.
Chemosphere ; 352: 141481, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395366

RESUMEN

The production of cheap, efficient, and stable photocatalysts for degrading antibiotic contaminants remains challenging. Herein, Bi2O3/boron nitride (BN)/Co3O4 ternary composites were synthesized using the impregnation method. The morphological characteristics, structural features, and photochemical properties of the prepared photocatalysts were investigated via X-ray diffraction, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, and ultraviolet-visible (Vis) diffuse reflectance spectrum techniques. BN was used as a charge transfer bridge in the ternary composites, which afforded a heterojunction between the two semiconductors. The formation of the heterojunction substantially enhanced the charge separation and improved the photocatalyst performance. The degradation activity of the Bi2O3/BN/Co3O4 ternary composites against norfloxacin (NOR) under Vis light irradiation was investigated. The degradation rate of NOR using 5-wt% Bi2O3/BN/Co3O4 reached 98% in 180 min, indicating excellent photocatalytic performance. The ternary composites also exhibited high photostability with a degradation efficiency of 88.4% after five cycles. Hydroxyl radicals (•OH), superoxide radicals (•O2-), and holes (h+) played a synergistic role in the photocatalytic reaction, where h+ and •O2- were more important than •OH. Consequently, seven intermediates and major photocatalytic degradation pathways were identified. Toxicity experiments showed that the toxicity of the degradation solution to Chlorella pyrenoidosa decreased. Finally, the ecotoxicity of NOR and its intermediates were analyzed using the Toxicity Estimation Software Tool, with most intermediates exhibiting low toxicity.


Asunto(s)
Compuestos de Boro , Chlorella , Cobalto , Norfloxacino , Óxidos , Norfloxacino/toxicidad , Catálisis
8.
Materials (Basel) ; 17(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38930403

RESUMEN

Alite(C3S)-Ye'elimite(C4A3$) cement is a high cementitious material that incorporates a precise proportion of ye'elimite into the ordinary Portland cement. The synthesis and hydration behavior of Alite-Ye'elimite clinker with different lime saturation factors were investigated. The clinkers were synthesized using a secondary thermal treatment process, and their compositions were characterized. The hydrated pastes were analyzed for their hydration products, pore structure, mechanical strength, and microstructure. The clinkers and hydration products were characterized using XRD, TG-DSC, SEM, and MIP analysis. The results showed that the Alite-Ye'elimite cement clinker with a lime saturation factor (KH) of 0.93, prepared through secondary heat treatment, contained 64.88% C3S and 2.06% C4A3$. At this composition, the Alite-Ye'elimite cement clinker demonstrated the highest 28-day strength. The addition of SO3 to the clinkers decreased the content of tricalcium aluminate (C3A) and the ratio of Alite/Belite (C3S/C2S), resulting in a preference for belite formation. The pore structure of the hydrated pastes was also investigated, revealing a distribution of pore sizes ranging from 0.01 to 10 µm, with two peaks on each differential distribution curve corresponding to micron and sub-micron pores. The pore volume decreased from 0.22 ± 0.03 to 0.15 ± 0.18 cm3 g-1, and the main peak of pore distribution shifted towards smaller sizes with increasing hydration time.

9.
J Environ Manage ; 126: 174-81, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23683338

RESUMEN

We determined the effects of nitrification capacity and environmental factors on landfill methane oxidation potential (MOP) using an aged refuse in laboratory batch assays and compared it with two different types of soils. The nitrogen conversion in the three experimental materials after 120 h incubation yielded first-order reaction kinetics at an initial concentration of 200 mg kg(-1) NH4(+)-N. The net nitrification rate for the aged refuse was 1.50 (p < 0.05) and 2.08 (p < 0.05) times that of the clay soil and the sandy soil, respectively. The net NO3(-)-N generation rate by the aged refuse was 1.93 (p < 0.05) and 2.57 (p < 0.05) times that of the clay soil and the sandy soil, respectively. When facilitated by ammonia-oxidizing bacteria during CH4 co-oxidation, the average value of the MOP in the aged refuse at a temperature range of 4-45 °C was 2.34 (p < 0.01) and 4.71 (p < 0.05) times greater than that of the clay soil and the sandy soil, respectively. When the moisture content ranged from 8 to 32% by mass, the average values for the MOP in the aged refuse were 2.08 (p < 0.01) and 3.15 (p < 0.01) times greater than that of the clay soil and the sandy soil, respectively. The N2O fluxes in the aged refuse at 32% moisture content were 5.33 (p < 0.05) and 12.00 (p < 0.05) times more than in the clay and the sandy soil, respectively. The increase in N2O emissions from a municipal solid waste landfill can be neglected after applying an aged refuse bio-cover because of the much higher MOP in the aged refuse. The calculated maximum MOP value in the aged refuse was 12.45 µmol g(-1) d.w. h(-1), which was much higher than the documented data.


Asunto(s)
Metano/metabolismo , Nitrógeno , Óxido Nitroso/análisis , Eliminación de Residuos/métodos , Instalaciones de Eliminación de Residuos , Amoníaco/metabolismo , Bacterias/metabolismo , Gases , Metano/análisis , Nitrificación , Nitrógeno/metabolismo , Oxidación-Reducción , Tamaño de la Partícula
10.
Environ Technol ; 34(9-12): 1489-96, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24191483

RESUMEN

Mineralized refuse and sewage sludge generated from solid waste from municipal landfills and sewage treatment plants were sintered as a cost-effective adsorbent for the removal of phosphorus. Compared with the Freundlich model, phosphorus adsorption on the synthesized adsorbent, zeolite and ironstone was best described by the Langmuir model. Based on the Langmuir model, the maximum adsorption capacity of the synthesized adsorbent (9718 mg kg(-1)) was 13.7 and 25.4 times greater than those of zeolite and ironstone, respectively. The desorbability of phosphorus from the synthesized adsorbent was significantly lower than that of zeolite. Moreover, phosphorus removal using the synthesized adsorbent was more tolerant to pH fluctuations than zeolite and ironstone for the removal of phosphorus from aqueous solutions. The immobilization of phosphorus onto the synthesized adsorbent was attributed to the formation of insoluble calcium, aluminium and iron phosphorus. The heavy metal ion concentrations of the leachate of the synthesized adsorbent were negligible. The synthesized adsorbent prepared from mineralized refuse and sewage sludge was cost-effective and possessed a high adsorptive capacity for phosphorus removal from aqueous solutions.


Asunto(s)
Fósforo/aislamiento & purificación , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Biodegradación Ambiental , Concentración de Iones de Hidrógeno , Óxidos/química , Fósforo/química , Zeolitas/química
11.
Heliyon ; 9(10): e20301, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37767513

RESUMEN

The leachate sludge (LS) and fly ash (FA) are the foci of hazardous wastes which generated from the municipal solid waste incineration (MSWI). The current work developed a new way to use energy from MSWI process for the on-site sintering of LS and FA at a relatively low temperature. With the assistance of CaF2, granule of LS and MSWI FA were co-sintered. The influence of temperature, the mass of CaF2, and the mass ratio of LS/MSWI FA were investigated. As a result, heavy metals volatilization and leaching in the form of chlorinated salts were controlled. In addition, CaF2 improved the compressive strength of the granule under low-temperature sintering. Moreover, the scale-up co-sintering test was achieved in an MSWI chamber. The results showed that the optimum condition was sintering at 973K for 1 h. The compressive strength of sintered product reached 4.25 MPa, which met the standard of ceramic granule. Moreover, with the addition of CaF2, the volatilization rate of Pb, Zn, and Cd decreased by 6%, 7%, and 6%, respectively. This method can be a promising technique for the utilization of solid wastes.

12.
Sci Total Environ ; 903: 165925, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37544439

RESUMEN

Landfill leachate is an essential source of pathogens and antibiotic resistance genes (ARGs) in the environment. However, information on the removal behavior of pathogens and ARGs during the leachate treatment and the impact on surrounding groundwater is limited. In this study, we investigated the effects of leachate treatment on the removal of pathogens and ARGs with metagenomic sequencing, as well as the impact of landfill effluent on groundwater. It is shown that the leachate treatment could not completely remove pathogens and ARGs. Twenty-nine additional pathogens and twenty-nine ARGs were newly identified in the landfill effluent. The relative abundance of pathogens and multiple antibiotic resistance genes decreased after ultrafiltration but relative abundance increased after reverse osmosis. In addition, the relative abundances of Acinetobacter baumannii, Erwinia amylovora, Escherichia coli, Fusarium graminearum, Klebsiella pneumoniae, and Magnaporthe oryzae, as well as mdtH, VanZ, and blaOXA-53 increased significantly in the landfill effluent compared to the untreated leachate. The relative abundance of some mobile genetic elements (tniA, tniB, tnpA, istA, IS91) in leachate also increased after ultrafiltration and reverse osmosis. The size of pathogens, the size and properties of ARGs and mobile genetic elements, and the materials of ultrafiltration and reverse osmosis membranes may affect the removal effect of pathogens, ARGs and mobile genetic elements in leachate treatment process. Interestingly, the pathogens and ARGs in landfill effluent were transferred to groundwater according to SourceTracker. The ARGs, mobile genetic elements, and pathogens that are difficult to remove in the leachate treatment process, provide a reference for optimizing the leachate treatment process and improving the control of pathogens and ARGs. Furthermore, this study clarifies the effect of landfill leachate sources of pathogens and ARGs in groundwater.

13.
Sci Total Environ ; 841: 156790, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35724792

RESUMEN

Landfill cover soils (LCS) play important roles in mitigating methane emissions from landfills. Anaerobic oxidation of methane (AOM) has been demonstrated as a potential methane removal process in aquatic ecosystems. However, whether AOM could occur in LCS is largely unknown. Here, microcosm incubations with 13CH4 were applied to track the potential activities of AOM and quantitative PCR was used to identify the responsible microorganisms. AOM was found to be active in the bottom and middle layers of LCS. In the bottom layer, sulfate-AOM was the most active process, mainly dominated by ANME archaea (without ANME-2d). Meanwhile, in the middle layer, nitrate and nitrite were the major electron acceptors involved in AOM with high abundances of ANME-2d archaea and NC10 bacteria. Our results implied a spatial segregation of methane oxidizing microbes in LCS and might be helpful for future control of methane emissions by the enhancement of AOM.


Asunto(s)
Metano , Suelo , Anaerobiosis , Archaea , Ecosistema , Sedimentos Geológicos/microbiología , Oxidación-Reducción , Instalaciones de Eliminación de Residuos
14.
ACS Omega ; 7(30): 26265-26274, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35936420

RESUMEN

As a resource treatment method, pyrolysis realizes the recovery of oil and immobilization of heavy metals in oily sludge (OS). The results showed that the composition of OS had little effect on the trend of the whole pyrolysis process, but it had different effects on the mass loss and maximum weight loss rate at each pyrolysis stage. SEM-EDS results showed that the pyrolysis residue had a porous internal structure, which was similar to that of activated carbon. The elements S, Ca, O, Fe, Al, and Si were embedded in the carbon skeleton. After OS pyrolysis, the oil content of the solid residue was far less than 2%, which met the pollution control requirements for comprehensive utilization specified in China's oil and gas industry standard. At the same time, the ratio of exchangeable fraction decreased and the ratio of residual fraction increased after OS pyrolysis. The potential ecological hazard coefficient (E r) of Cd in OS2, OS2-500, and OS2-600 was greater than 40, which were strong and medium hazards. The E r values of OS2-700 and other metals were far lower than 40, which were low hazards. With the increase of pyrolysis temperature, the comprehensive ecological hazard index (RI) of heavy metals in the residue gradually decreased and the RI value of OS2-700 decreased to 28.01. Therefore, the pyrolysis residue had an internal porous structure and controllable environmental risk. It could be used as an adsorption material for heavy metals to realize the comprehensive utilization of OS.

15.
Ecotoxicology ; 20(5): 1154-9, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21516445

RESUMEN

The Taoge water system is located in the upstream of Taihu Lake basin and is characterized by its multi-connected rivers and lakes. In this paper, current analyses of hydrology, hydrodynamics and water pollution of Gehu Lake and Taige Canal are presented. Several technologies are proposed for pollution prevention and control, and water environmental protection in the Taihu Lake basin. These included water pollution control integration technology for the water systems of Gehu Lake, Taige Canal and Caoqiao River. Additionally, river-lake water quality and quantity regulation technology, ecological restoration technology for polluted and degraded water bodies, and water environmental integration management and optimization strategies were also examined. The main objectives of these strategies are to: (a) improve environmental quality of relative water bodies, prevent pollutants from entering Gehu Lake and Taige Canal, and ensure that the clean water after the pre-treatment through Gehu Lake is not polluted before entering the Taihu Lake through Taige Canal; (b) stably and efficiently intercept and decrease the pollution load entering the lake through enhancing the river outlet ecological system structure function and water self-purifying capacity, and (c) designate Gehu Lake as a regulation system for water quality and water quantity in the Taoge water system and thus guarantee the improvement of the water quality of the inflow into Taihu Lake.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Agua Dulce/química , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/prevención & control , China , Monitoreo del Ambiente , Hidrodinámica , Contaminación Química del Agua/análisis , Abastecimiento de Agua/análisis , Abastecimiento de Agua/estadística & datos numéricos
16.
Artículo en Inglés | MEDLINE | ID: mdl-34360174

RESUMEN

With the vigorous development of the 5G industry, the characteristic hazardous waste, spent coppery etchant, was also produced in large quantities. In recent years, there are many companies that have begun to collect spent coppery etchant for the purpose of producing recycled products, such as copper sulfate, copper oxide, basic copper chloride, and copper powder, which often contain large amounts of heavy metals. However, due to the lack of relevant standards and applicable regulatory measures, some of the recycled products flow to the feed processing industry and even to the food processing industry. This study investigated the pollution status of heavy metals in recycled products of spent coppery etchant and evaluated the impact of recycled products exposure on human health. The results showed that the content of Zn was the highest, which was 21 times higher than the corresponding standard limit. Human health risk assessment indicated that the hazard quotients of As account for 87.5% of the entire HI value, while the average carcinogenic risk values of As for copper sulfate, copper oxide, basic copper chloride, and copper powder are 1.09 × 10-5, 3.19 × 10-5, 1.29 × 10-5, 7.94 × 10-6, respectively. Meanwhile, suggestions on the supervision of recycled products and the concentration limits of heavy metals in recycled products were put forward.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , China , Cobre , Monitoreo del Ambiente , Contaminación Ambiental/análisis , Humanos , Industrias , Metales Pesados/análisis , Medición de Riesgo , Contaminantes del Suelo/análisis
17.
Chemosphere ; 257: 127123, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32505037

RESUMEN

It is a central issue to improve the separation efficiency of photogenerated charge carriers and the utilization of visible light in the field of photocatalysis. Herein, taking MIL-125(Ti) as a host material, the Pt/MIL-125(Ti) was first prepared by solvothermal method to build the interface of Schottky junction. Ag was then introduced onto the surface of Pt/MIL-125(Ti) to form the interface with the surface plasmon resonance effect. These double interfaces in the composite play a synergistic role on the photodagradation. The morphology, crystallinity and photochemical properties of the material were tested. By comparison, Pt/MIL-125(Ti)/Ag (4 wt% Ag) exhibited the best performance in the photodegradation of ketoprofen (KP, 10 mg/L) and the degradation process conformed to the pseudo-first-order kinetics. The photodegradation rate is 0.0253 min-1, which was higher than MIL-125(Ti) (0.0009 min-1). The TOC removal efficiency of KP reached approximately 51.5%. The electron paramagnetic resonance (EPR) and free radical capture tests verified that h+ and ·OH played the prominent roles during the reaction system. The degradation process, possible pathways and reaction mechanism were proposed. The design of the double interfaces between semiconductor and noble metals is a novel strategy to enhance the photocatalytic performance.


Asunto(s)
Cetoprofeno , Modelos Químicos , Catálisis , Cetoprofeno/química , Luz , Fotólisis , Semiconductores , Plata/química , Titanio/química
18.
Sci Total Environ ; 730: 139042, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32402966

RESUMEN

The inappropriate disposal of medical waste allows bacteria to acquire antibiotic resistance, which results in a threat to public health. Antibiotic resistance gene (ARG) profiles were determined for 45 different soil samples containing medical waste and 15 nearby soil samples as controls. Besides physical and chemical analyses (i.e., dry matter content, pH value, and metal content), the genomes of microorganisms from the soil samples were extracted for high-throughput sequencing. ARG abundances of these samples were obtained by searching the metagenomic sequences against the antibiotic resistance gene database and the copies of ARGs per copy of the 16S rRNA gene at different levels were assessed. The results showed medical waste accumulation significantly enriched the contents of Cu, Cr, Pb, and As in the tested soil samples. Compared to the controls, the samples collected from areas containing medical waste were significantly enriched (p < 0.05, t-test) with ARGs annotated as sulfonamide and multidrug resistance genes, and in particular, the subtypes sul1 and sul2 (sulfonamide resistance genes), and multidrug_transporter (multidrug resistance gene). Moreover, the ARGs of the samples from the polluted areas were more diverse than those of the control samples (p < 0.05, t-test). The comparatively higher abundance and diversity of ARGs in contaminated soil pose a potential risk to human health.


Asunto(s)
Suelo , Antibacterianos , Farmacorresistencia Microbiana , Genes Bacterianos , Eliminación de Residuos Sanitarios , ARN Ribosómico 16S
19.
Sci Total Environ ; 720: 137585, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32135280

RESUMEN

Cadmium (Cd) contamination from mining and smelting operations has led to growing environmental health concerns. In this study, soil, surface water, drinking water, rice, vegetables, and biomarkers (hair and urine) were collected from local residents near an active lead-zinc mine and a copper smelter. The aim was to determine how nonferrous metal mining and smelting activities have affected the health of local residents. It was found that the Cd concentrations in most soil and rice samples exceeded the national tolerance limits of China. Dietary intakes of rice and vegetables were the two major pathways of Cd exposure to local residents, accounting for >97% of the total probable daily intake. The excessive daily intake of Cd resulted in potential non-carcinogenic risks to the local residents, especially to children living around the two areas. The mean hair and urine Cd concentrations were 0.098 ± 0.10 mg kg-1 and 5.7 ± 3.1 µg L-1 in the mining area, and 0.30 ± 0.21 mg kg-1 and 5.5 ± 3.5 µg L-1 in the smelting area, respectively. A significantly positive correlation between hair Cd concentrations and the hazard quotient (HQ) for rice ingestion indicated that rice contamination had the most critical adverse effect on local residents. Due to the high levels of environmental Cd contamination, residents of the smelting area had a much higher Cd exposure than residents of the mining area. The results suggested that nonferrous mining and smelting should not coexist with agricultural activities. Effective contamination mitigation strategies and environmental remediation should be formulated and implemented to improve the health of local residents.


Asunto(s)
Minería , Cadmio , China , Cobre , Monitoreo del Ambiente , Contaminación de Alimentos , Humanos , Plomo , Medición de Riesgo , Contaminantes del Suelo , Zinc
20.
Waste Manag ; 29(3): 1012-7, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18835706

RESUMEN

The irrigation of a plant-soil system with landfill leachate should promote the formation of N2O due to the introduction of organic carbon and mineralized-N and the elevation of the moisture content. Laboratory incubation was performed to minimize N2O emissions from a leachate irrigated plant-soil system by manipulating leachate NH(4)(+)-N loading, moisture content, and soil type. A field investigation, consisting of three plots planted with Cynodon dactylon, Nerium indicum Mill, and Festuca arundinacea Schreb, was then conducted to select plant species. There was almost no difference in N2O emissions between soil moisture contents of 46% and 55% water-filled pore space (WFPS), while a sharp increase occurred at 70% WFPS. N2O fluxes were significantly correlated with leachate NH4(+)-N loading. Amongst the physiochemical characteristics of the selected nine soils, only soil pH was significantly correlated with N2O fluxes. Compared with fertilizers application in other ecosystems, N2O turnover rate from the plant-soil system under leachate irrigation was relatively lower. Therefore, avoiding high NH4(+)-N loadings and excessively wet conditions (<60% WFPS) and cultivating conifer plants of stronger sunlight penetration with less litter deposit on acidic sandy soil could minimize potential N2O emissions under leachate irrigation.


Asunto(s)
Monitoreo del Ambiente , Óxido Nitroso/análisis , Plantas/metabolismo , Suelo/análisis , Contaminantes Químicos del Agua/análisis , Carbono/análisis , Humedad , Compuestos Orgánicos/análisis , Factores de Tiempo , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA