Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(4): e23469, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38358361

RESUMEN

The adenopituitary secretes follicle-stimulating hormone (FSH), which plays a crucial role in regulating the growth, development, and reproductive functions of organisms. Investigating the process of FSH synthesis and secretion can offer valuable insights into potential areas of focus for reproductive research. Epidermal growth factor (EGF) is a significant paracrine/autocrine factor within the body, and studies have demonstrated its ability to stimulate FSH secretion in animals. However, the precise mechanisms that regulate this action are still poorly understood. In this research, in vivo and in vitro experiments showed that the activation of epidermal growth factor receptor (EGFR) by EGF induces the upregulation of miR-27b-3p and that miR-27b-3p targets and inhibits Foxo1 mRNA expression, resulting in increased FSH synthesis and secretion. In summary, this study elucidates the precise molecular mechanism through which EGF governs the synthesis and secretion of FSH via the EGFR/miR-27b-3p/FOXO1 pathway.


Asunto(s)
Factor de Crecimiento Epidérmico , MicroARNs , Animales , Ratas , Transporte Biológico , Receptores ErbB/genética , Hormona Folículo Estimulante , MicroARNs/genética
2.
Exp Cell Res ; 438(1): 114052, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636651

RESUMEN

Trained immunity is mechanistically defined as the metabolically and epigenetically mediated long-term functional adaptation of the innate immune system, characterized by a heightened response to a secondary stimulation. Given appropriate activation, trained immunity represents an attractive anti-infective therapeutic target. Nevertheless, excessive immune response and subsequent inflammatory cascades may contribute to pathological tissue damage, indicating that the negative impacts of trained immunity appear to be significant. In this study, we show that innate immune responses such as the production of extracellular traps, pro-inflammatory cytokines, and autophagy-related proteins were markedly augmented in trained BMDMs. Furthermore, heat-killed C. albicans priming promotes the activation of the AIM2 inflammasome, and AIM2-/- mice exhibit impaired memory response induced by heat-killed C. albicans. Therefore, we establish that the AIM2 inflammasome is involved in trained immunity and emerges as a promising therapeutic target for potentially deleterious effects. Dihydroartemisinin can inhibit the memory response induced by heat-killed C. albicans through modulation of mTOR signaling and the AIM2 inflammasome. The findings suggest that dihydroartemisinin can reduce the induction of trained immunity by heat-killed C. albicans in C57BL/6 mice. Dihydroartemisinin is one such therapeutic intervention that has the potential to treat of diseases characterized by excessive trained immunity.


Asunto(s)
Artemisininas , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal/efectos de los fármacos , Ratones , Artemisininas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Candida albicans/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Ratones Noqueados , Inmunidad Entrenada
3.
BMC Biol ; 22(1): 104, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702712

RESUMEN

BACKGROUND: Gonadotropin precisely controls mammalian reproductive activities. Systematic analysis of the mechanisms by which epigenetic modifications regulate the synthesis and secretion of gonadotropin can be useful for more precise regulation of the animal reproductive process. Previous studies have identified many differential m6A modifications in the GnRH-treated adenohypophysis. However, the molecular mechanism by which m6A modification regulates gonadotropin synthesis and secretion remains unclear. RESULTS: Herein, it was found that GnRH can promote gonadotropin synthesis and secretion by promoting the expression of FTO. Highly expressed FTO binds to Foxp2 mRNA in the nucleus, exerting a demethylation function and reducing m6A modification. After Foxp2 mRNA exits the nucleus, the lack of m6A modification prevents YTHDF3 from binding to it, resulting in increased stability and upregulation of Foxp2 mRNA expression, which activates the cAMP/PKA signaling pathway to promote gonadotropin synthesis and secretion. CONCLUSIONS: Overall, the study reveals the molecular mechanism of GnRH regulating the gonadotropin synthesis and secretion through FTO-mediated m6A modification. The results of this study allow systematic interpretation of the regulatory mechanism of gonadotropin synthesis and secretion in the pituitary at the epigenetic level and provide a theoretical basis for the application of reproductive hormones in the regulation of animal artificial reproduction.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Hormona Liberadora de Gonadotropina , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Liberadora de Gonadotropina/genética , Animales , Gonadotropinas/metabolismo , Ratones , ARN Mensajero/metabolismo , ARN Mensajero/genética , Metilación de ARN
4.
J Hepatol ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38670321

RESUMEN

BACKGROUND & AIMS: The precise pathomechanisms underlying the development of non-alcoholic steatohepatitis (NASH, also known as metabolic dysfunction-associated steatohepatitis [MASH]) remain incompletely understood. In this study, we investigated the potential role of EF-hand domain family member D2 (EFHD2), a novel molecule specific to immune cells, in the pathogenesis of NASH. METHODS: Hepatic EFHD2 expression was characterized in patients with NASH and two diet-induced NASH mouse models. Single-cell RNA sequencing (scRNA-seq) and double-immunohistochemistry were employed to explore EFHD2 expression patterns in NASH livers. The effects of global and myeloid-specific EFHD2 deletion on NASH and NASH-related hepatocellular carcinoma were assessed. Molecular mechanisms underlying EFHD2 function were investigated, while chemical and genetic investigations were performed to assess its potential as a therapeutic target. RESULTS: EFHD2 expression was significantly elevated in hepatic macrophages/monocytes in both patients with NASH and mice. Deletion of EFHD2, either globally or specifically in myeloid cells, improved hepatic steatosis, reduced immune cell infiltration, inhibited lipid peroxidation-induced ferroptosis, and attenuated fibrosis in NASH. Additionally, it hindered the development of NASH-related hepatocellular carcinoma. Specifically, deletion of myeloid EFHD2 prevented the replacement of TIM4+ resident Kupffer cells by infiltrated monocytes and reversed the decreases in patrolling monocytes and CD4+/CD8+ T cell ratio in NASH. Mechanistically, our investigation revealed that EFHD2 in myeloid cells interacts with cytosolic YWHAZ (14-3-3ζ), facilitating the translocation of IFNγR2 (interferon-γ receptor-2) onto the plasma membrane. This interaction mediates interferon-γ signaling, which triggers immune and inflammatory responses in macrophages during NASH. Finally, a novel stapled α-helical peptide targeting EFHD2 was shown to be effective in protecting against NASH pathology in mice. CONCLUSION: Our study reveals a pivotal immunomodulatory and inflammatory role of EFHD2 in NASH, underscoring EFHD2 as a promising druggable target for NASH treatment. IMPACT AND IMPLICATIONS: Non-alcoholic steatohepatitis (NASH) represents an advanced stage of non-alcoholic fatty liver disease (NAFLD); however, not all patients with NAFLD progress to NASH. A key challenge is identifying the factors that trigger inflammation, which propels the transition from simple fatty liver to NASH. Our research pinpointed EFHD2 as a pivotal driver of NASH, orchestrating the over-activation of interferon-γ signaling within the liver during NASH progression. A stapled peptide designed to target EFHD2 exhibited therapeutic promise in NASH mice. These findings support the potential of EFHD2 as a therapeutic target in NASH.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38602465

RESUMEN

With the widespread use of antibiotics, the incidence of antibiotic resistance in microorganisms has increased. Monochamus alternatus is a trunk borer of pine trees. This study aimed to investigate the in vitro antimicrobial and biological characteristics of Enterococcus casseliflavus TN-47 (PP411196), isolated from the gastrointestinal tract of M. alternatus in Jilin Province, PR China. Among 13 isolates obtained from the insects, five were preliminarily screened for antimicrobial activity. E. casseliflavus TN-47, which exhibited the strongest antimicrobial activity, was identified. E. casseliflavus TN-47 possessed antimicrobial activity against Staphylococcus aureus USA300 and Salmonella enterica serovar Pullorum ATCC 19945. Furthermore, E. casseliflavus TN-47 was sensitive to tetracyclines, penicillins (ampicillin, carbenicillin, and piperacillin), quinolones and nitrofuran antibiotics, and resistant to certain beta-lactam antibiotics (oxacillin, cefradine and cephalexin), macrolide antibiotics, sulfonamides and aminoglycosides. E. casseliflavus TN-47 could tolerate low pH and pepsin-rich conditions in the stomach and grow in the presence of bile acids. E. casseliflavus TN-47 retained its strong auto-aggregating ability and hydrophobicity. This strain did not exhibit any haemolytic activity. These results indicate that E. casseliflavus TN-47 has potential as a probiotic. This study provides a theoretical foundation for the future applications of E. casseliflavus TN-47 and its secondary metabolites in animal nutrition and feed.


Asunto(s)
Escarabajos , Enterococcus , Ácidos Grasos , Animales , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Ácidos Grasos/química , Antibacterianos/farmacología , Oxacilina
6.
Vet Res ; 55(1): 52, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622656

RESUMEN

Clostridium perfringens (C. perfringens) infection is recognized as one of the most challenging issues threatening food safety and perplexing agricultural development. To date, the molecular mechanisms of the interactions between C. perfringens and the host remain poorly understood. Here, we show that stimulator of interferon genes (STING)-dependent trained immunity protected against C. perfringens infection through mTOR signaling. Heat-killed Candida albicans (HKCA) training elicited elevated TNF-α and IL-6 production after LPS restimulation in mouse peritoneal macrophages (PM). Although HKCA-trained PM produced decreased levels of TNF-α and IL-6, the importance of trained immunity was demonstrated by the fact that HKCA training resulted in enhanced bacterial phagocytic ability and clearance in vivo and in vitro during C. perfringens infection. Interestingly, HKCA training resulted in the activation of STING signaling. We further demonstrate that STING agonist DMXAA is a strong inducer of trained immunity and conferred host resistance to C. perfringens infection in PM. Importantly, corresponding to higher bacterial burden, reduction in cytokine secretion, phagocytosis, and bacterial killing were shown in the absence of STING after HKCA training. Meanwhile, the high expression levels of AKT/mTOR/HIF1α were indeed accompanied by an activated STING signaling under HKCA or DMXAA training. Moreover, inhibiting mTOR signaling with rapamycin dampened the trained response to LPS and C. perfringens challenge in wild-type (WT) PM after HKCA training. Furthermore, STING­deficient PM presented decreased levels of mTOR signaling-related proteins. Altogether, these results support STING involvement in trained immunity which protects against C. perfringens infection via mTOR signaling.


Asunto(s)
Infecciones por Clostridium , Animales , Ratones , Infecciones por Clostridium/veterinaria , Clostridium perfringens , Interleucina-6 , Lipopolisacáridos , Serina-Treonina Quinasas TOR , Inmunidad Entrenada , Factor de Necrosis Tumoral alfa/metabolismo
7.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731915

RESUMEN

The mammalian pituitary gland drives highly conserved physiological processes such as somatic cell growth, pubertal transformation, fertility, and metabolism by secreting a variety of hormones. Recently, single-cell transcriptomics techniques have been used in pituitary gland research. However, more studies have focused on adult pituitary gland tissues from different species or different sexes, and no research has yet resolved cellular differences in pituitary gland tissue before and after sexual maturation. Here, we identified a total of 15 cell clusters and constructed single-cell transcriptional profiles of rats before and after sexual maturation. Furthermore, focusing on the gonadotrope cluster, 106 genes were found to be differentially expressed before and after sexual maturation. It was verified that Spp1, which is specifically expressed in gonadotrope cells, could serve as a novel marker for this cell cluster and has a promotional effect on the synthesis and secretion of follicle-stimulating hormone. The results provide a new resource for further resolving the regulatory mechanism of pituitary gland development and pituitary hormone synthesis and secretion.


Asunto(s)
Gonadotrofos , Hipófisis , Maduración Sexual , Análisis de la Célula Individual , Animales , Ratas , Maduración Sexual/genética , Hipófisis/metabolismo , Gonadotrofos/metabolismo , Análisis de la Célula Individual/métodos , Masculino , Femenino , Biomarcadores/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Hormona Folículo Estimulante/metabolismo
8.
Med Res Rev ; 43(3): 683-712, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36658745

RESUMEN

Cardio-metabolic-diseases (cardio-metabolic-diseases) are leading causes of death and disability worldwide and impose a tremendous burden on whole society as well as individuals. As a new type of regulated cell death (RCD), ferroptosis is distinct from several classical types of RCDs such as apoptosis and necroptosis in cell morphology, biochemistry, and genetics. The main molecular mechanisms of ferroptosis involve iron metabolism dysregulation, mitochondrial malfunction, impaired antioxidant capacity, accumulation of lipid-related peroxides and membrane disruption. Within the past few years, mounting evidence has shown that ferroptosis contributes to the pathophysiological process in cardio-metabolic-diseases. However, the exact roles and underlying molecular mechanisms have not been fully elucidated. This review comprehensively summarizes the mechanism of ferroptosis in the development and progression of cardio-metabolic-diseases, so as to provide new insights for cardio-metabolic-diseases pathophysiology. Moreover, we highlight potential druggable molecules in ferroptosis signaling pathway, and discuss recent advances in management strategies by targeting ferroptosis for prevention and treatment of cardio-metabolic-diseases.


Asunto(s)
Ferroptosis , Enfermedades Metabólicas , Humanos , Apoptosis , Enfermedades Metabólicas/tratamiento farmacológico , Antioxidantes , Peróxidos Lipídicos
9.
FASEB J ; 36(3): e22204, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35147984

RESUMEN

N6-methyladenosine is considered to be the most common and abundant internal chemical modification among the more than 150 identified chemical RNA modifications. It is involved in most biological processes and actively participates in the regulation of animal reproduction. However, the potential function of m6 A in the pituitaries of mammals is not yet clear. It is also unknown whether m6 A is involved in the secretion and regulation of FSH by GnRH, which in turn affects mammalian reproduction. In this study, rats were treated with gonadorelin to simulate physiological GnRH-mediated regulation of FSH synthesis and secretion, and m6 A-seq was used to analyze the differential m6 A modification of the rat pituitary after gonadorelin treatment. A whole-transcriptome map of m6 A in the rat pituitary gland before and after gonadorelin treatment was successfully created. A total of 6413 differential peaks were identified, of which 3764 m6 A peaks were upregulated and 2649 m6 A peaks were downregulated. Among the 709 differentially expressed genes, 250 genes were discovered with differential methylation modifications. Intriguingly, the altered m6 A peaks within mRNAs were enriched in steroid biosynthetic processes and responses to cAMP. The results of the study will lay a foundation for further exploration of the potential role of m6 A modification in the regulation of reproductive hormone secretion and provide a theoretical basis for the application of GnRH analogs in mammalian artificial reproduction.


Asunto(s)
Adenosina/análogos & derivados , Hormona Liberadora de Gonadotropina/metabolismo , Adenohipófisis/metabolismo , Procesamiento Postranscripcional del ARN , Adenosina/metabolismo , Animales , Hormona Liberadora de Gonadotropina/farmacología , Masculino , Metilación , Adenohipófisis/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
10.
Eur Heart J ; 43(43): 4579-4595, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-35929617

RESUMEN

AIMS: Exercise confers protection against cardiovascular ageing, but the mechanisms remain largely unknown. This study sought to investigate the role of fibronectin type-III domain-containing protein 5 (FNDC5)/irisin, an exercise-associated hormone, in vascular ageing. Moreover, the existence of FNDC5/irisin in circulating extracellular vesicles (EVs) and their biological functions was explored. METHODS AND RESULTS: FNDC5/irisin was reduced in natural ageing, senescence, and angiotensin II (Ang II)-treated conditions. The deletion of FNDC5 shortened lifespan in mice. Additionally, FNDC5 deficiency aggravated vascular stiffness, senescence, oxidative stress, inflammation, and endothelial dysfunction in 24-month-old naturally aged and Ang II-treated mice. Conversely, treatment of recombinant irisin alleviated Ang II-induced vascular stiffness and senescence in mice and vascular smooth muscle cells. FNDC5 was triggered by exercise, while FNDC5 knockout abrogated exercise-induced protection against Ang II-induced vascular stiffness and senescence. Intriguingly, FNDC5 was detected in human and mouse blood-derived EVs, and exercise-induced FNDC5/irisin-enriched EVs showed potent anti-stiffness and anti-senescence effects in vivo and in vitro. Adeno-associated virus-mediated rescue of FNDC5 specifically in muscle but not liver in FNDC5 knockout mice, promoted the release of FNDC5/irisin-enriched EVs into circulation in response to exercise, which ameliorated vascular stiffness, senescence, and inflammation. Mechanistically, irisin activated DnaJb3/Hsp40 chaperone system to stabilize SIRT6 protein in an Hsp70-dependent manner. Finally, plasma irisin concentrations were positively associated with exercise time but negatively associated with arterial stiffness in a proof-of-concept human study. CONCLUSION: FNDC5/irisin-enriched EVs contribute to exercise-induced protection against vascular ageing. These findings indicate that the exerkine FNDC5/irisin may be a potential target for ageing-related vascular comorbidities.


Asunto(s)
Vesículas Extracelulares , Sirtuinas , Humanos , Ratones , Animales , Anciano , Preescolar , Fibronectinas/metabolismo , Factores de Transcripción/metabolismo , Ratones Noqueados , Envejecimiento , Angiotensina II/farmacología , Inflamación/metabolismo , Músculo Esquelético/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo
11.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37834252

RESUMEN

Improving the quality of oocytes matured in vitro is integral to enhancing the efficacy of in vitro embryo production. Oxidative stress is one of the primary causes of quality decline in oocytes matured in vitro. In this study, ferulic acid (FA), a natural antioxidant found in plant cell walls, was investigated to evaluate its impact on bovine oocyte maturation and subsequent embryonic development. Bovine cumulus-oocyte complexes (COCs) were treated with different concentrations of FA (0, 2.5, 5, 10, 20 µM) during in vitro maturation (IVM). Compared to the control group, supplementation with 5 µM FA significantly enhanced the maturation rates of bovine oocytes and the expansion of the cumulus cells area, as well as the subsequent cleavage and blastocyst formation rates after in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT). Furthermore, FA supplementation was observed to effectively decrease the levels of ROS in bovine oocytes and improve their mitochondrial function. Our experiments demonstrate that FA can maintain the levels of antioxidants (GSH, SOD, CAT) in oocytes, thereby alleviating the oxidative stress induced by H2O2. RT-qPCR results revealed that, after FA treatment, the relative mRNA expression levels of genes related to oocyte maturation (GDF-9 and BMP-15), cumulus cell expansion (HAS2, PTX3, CX37, and CX43), and embryo pluripotency (OCT4, SOX2, and CDX2) were significantly increased. In conclusion, these findings demonstrate that FA supplementation during bovine oocyte IVM can enhance oocyte quality and the developmental potential of subsequent embryos.


Asunto(s)
Peróxido de Hidrógeno , Técnicas de Maduración In Vitro de los Oocitos , Embarazo , Femenino , Animales , Bovinos , Técnicas de Maduración In Vitro de los Oocitos/métodos , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Oocitos/metabolismo , Oogénesis , Desarrollo Embrionario , Fertilización In Vitro , Antioxidantes/farmacología , Antioxidantes/metabolismo , Células del Cúmulo/metabolismo , Blastocisto
12.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36769368

RESUMEN

Pure cultures of chicken intestinal microbial species may still be crucial and imperative to expound on the function of gut microbiota, and also contribute to the development of potential probiotics and novel bioactive metabolites from gut microbiota. In this study, we isolated and identified 507 chicken intestinal bacterial isolates, including 89 previously uncultured isolates. Among these, a total of 63 Lactobacillus strains, belonging to L. vaginalis, L. crispatus, L. gallinarum, L. reuteri, L. salivarius, and L. saerimneri, exhibited antibacterial activity against S. Pullorum. Acid tolerance tests showed Limosilactobacillus reuteri strain YPG14 (L. reuteri strain YPG14) has a particularly strong tolerance to acid. We further characterized other probiotic properties of L. reuteri strain YPG14. In simulated intestinal fluid, the growth of L. reuteri strain YPG14 remained stable after incubation for 4 h. The auto-aggregation test showed the auto-aggregation percentage of L. reuteri strain YPG14 was recorded as 15.0 ± 0.38%, 48.3 ± 2.51%, and 75.1 ± 4.44% at 3, 12, and 24 h, respectively. In addition, the mucin binding assay showed L. reuteri strain YPG14 exhibited 12.07 ± 0.02% adhesion to mucin. Antibiotic sensitivity testing showed that L. reuteri strain YPG14 was sensitive to the majority of the tested antibiotics. The anti-Salmonella Pullorum (S. Pullorum) infection effect in vivo revealed that the consumption of L. reuteri strain YPG14 could significantly improve body weight loss and survival rate of chicks infected by S. Pullorum; reduce the loads of S. Pullorum in the jejunum, liver, spleen, and feces; and alleviate the jejunum villi morphological structure damage, crypt loss, and inflammatory cell infiltration caused by S. Pullorum. Overall, this study may help us to understand the diversity of chicken intestinal microflora and provide some insights for potential probiotic development from gut microbiota and may find application in the poultry industry.


Asunto(s)
Microbioma Gastrointestinal , Limosilactobacillus reuteri , Probióticos , Animales , Pollos , Intestinos/microbiología , Antibacterianos/farmacología , Probióticos/farmacología , Mucinas
13.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36835218

RESUMEN

Dairy farming is the most important economic activity in animal husbandry. Mastitis is the most common disease in dairy cattle and has a significant impact on milk quality and yield. The natural extract allicin, which is the main active ingredient of the sulfur-containing organic compounds in garlic, has anti-inflammatory, anticancer, antioxidant, and antibacterial properties; however, the specific mechanism underlying its effect on mastitis in dairy cows needs to be determined. Therefore, in this study, whether allicin can reduce lipopolysaccharide (LPS)-induced inflammation in the mammary epithelium of dairy cows was investigated. A cellular model of mammary inflammation was established by pretreating bovine mammary epithelial cells (MAC-T) with 10 µg/mL LPS, and the cultures were then treated with varying concentrations of allicin (0, 1, 2.5, 5, and 7.5 µM) added to the culture medium. MAC-T cells were examined using RT-qPCR and Western blotting to determine the effect of allicin. Subsequently, the level of phosphorylated nuclear factor kappa-B (NF-κB) was measured to further explore the mechanism underlying the effect of allicin on bovine mammary epithelial cell inflammation. Treatment with 2.5 µM allicin considerably decreased the LPS-induced increase in the levels of the inflammatory cytokines interleukin-1ß (IL-1ß), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) and inhibited activation of the NOD-like receptor protein 3 (NLRP3) inflammasome in cow mammary epithelial cells. Further research revealed that allicin also inhibited the phosphorylation of inhibitors of nuclear factor kappa-B-α (IκB-α) and NF-κB p65. In mice, LPS-induced mastitis was also ameliorated by allicin. Therefore, we hypothesize that allicin alleviated LPS-induced inflammation in the mammary epithelial cells of cows probably by affecting the TLR4/NF-κB signaling pathway. Allicin will likely become an alternative to antibiotics for the treatment of mastitis in cows.


Asunto(s)
Disulfuros , Mastitis Bovina , FN-kappa B , Ácidos Sulfínicos , Animales , Bovinos , Femenino , Ratones , Disulfuros/uso terapéutico , Células Epiteliales/metabolismo , Inflamación/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos , Mastitis Bovina/tratamiento farmacológico , FN-kappa B/metabolismo , Transducción de Señal , Ácidos Sulfínicos/uso terapéutico , Receptor Toll-Like 4/metabolismo
14.
BMC Genomics ; 23(1): 380, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35590262

RESUMEN

BACKGROUND: Drug-resistant bacteria have posed a great threat to animal breeding and human health. It is obviously urgent to develop new antibiotics that can effectively combat drug-resistant bacteria. The commensal flora inhabited in the intestines become potential candidates owing to the production of a wide range of antimicrobial substances. In addition, host genomes do not encode most of the enzymes needed to degrade dietary structural polysaccharides. The decomposition of these polysaccharides mainly depends on gut commensal-derived CAZymes. RESULTS: We report a novel species isolated from the chicken intestine, designated as Paenibacillus jilinensis sp. nov. and with YPG26T (= CCTCC M2020899T) as the type strain. The complete genome of P. jilinensis YPG26T is made up of a single circular chromosome measuring 3.97 Mb in length and containing 49.34% (mol%) G + C. It carries 33 rRNA genes, 89 tRNA genes, and 3871 protein-coding genes, among which abundant carbohydrate-degrading enzymes (CAZymes) are encoded. Moreover, this strain has the capability to antagonize multiple pathogens in vitro. We identified putative 6 BGCs encoding bacteriocin, NRPs, PKs, terpenes, and protcusin by genome mining. In addition, antibiotic susceptibility testing showed sensitivity to all antibiotics tested. CONCLUSIONS: This study highlights the varieties of CAZymes genes and BGCs in the genome of Paenibacillus jilinensis. These findings confirm the beneficial function of the gut microbiota and also provide a promising candidate for the development of new carbohydrate degrading enzymes and antibacterial agents.


Asunto(s)
Antiinfecciosos , Paenibacillus , Antibacterianos , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos/análisis , Familia de Multigenes , Paenibacillus/genética , Filogenia , Polisacáridos , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
15.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36555116

RESUMEN

The circadian rhythm of melatonin secretion in the pineal gland is highly conserved in vertebrates. Melatonin levels are always elevated at night. Acetylserotonin O-methyltransferase (ASMT) is the last enzyme in the regulation of melatonin biosynthesis (N-acetyl-5-hydroxytryptamine-melatonin). S-adenosylmethionine (SAM) is an important methyl donor in mammals and can be used as a substrate for the synthesis of melatonin. Methionine adenosyltransferase (MAT) catalyzes the synthesis of SAM from methionine and ATP and has a circadian rhythm. CircRNA is an emerging type of endogenous noncoding RNA with a closed loop. Whether circRNAs in the pineal gland can participate in the regulation of melatonin synthesis by binding miRNAs to target mat2a as part of the circadian rhythm is still unclear. In this study, we predicted the targeting relationship of differentially expressed circRNAs, miRNAs and mRNAs based on the results of rat pineal RNA sequencing. Mat2a siRNA transfection confirmed that mat2a is involved in the synthesis of melatonin. Circ-ERC2 and miR-125a-5p were screened out by software prediction, dual-luciferase reporter experiments, cell transfection, etc. Finally, we constructed a rat superior cervical ganglionectomy model (SCGx), and the results showed that circ-ERC2 could participate in the synthesis of melatonin through the miR-125a-5p/MAT2A axis. The results of the study revealed that circ-ERC2 can act as a molecular sponge of miR-125a-5p to regulate the synthesis of melatonin in the pineal gland by targeting mat2a. This experiment provides a basis for research on the circadian rhythm of noncoding RNA on pineal melatonin secretion.


Asunto(s)
Melatonina , Metionina Adenosiltransferasa , MicroARNs , Glándula Pineal , ARN Circular , Animales , Ratas , Ritmo Circadiano/genética , Melatonina/metabolismo , Metionina Adenosiltransferasa/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Glándula Pineal/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , S-Adenosilmetionina/metabolismo
16.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36555554

RESUMEN

Prolactin (PRL) is an important hormone that is secreted by the pituitary gland and plays an important role in the growth, development and reproduction of organisms. Thyrotropin-releasing hormone (TRH) is a common prolactin-releasing factor that regulates the synthesis and secretion of prolactin. In recent studies, microRNAs (miRNAs) have been found to play a key role in the regulation of pituitary hormones. However, there is a lack of systematic studies on the regulatory role that TRH plays on the pituitary transcriptome, and the role of miRNAs in the regulation of PRL synthesis and secretion by TRH lacks experimental evidence. In this study, we first investigated the changes in PRL synthesis and secretion in the rat pituitary gland after TRH administration. The results of transcriptomic analysis after TRH treatment showed that 102 genes, including those that encode Nppc, Fgf1, PRL, Cd63, Npw, and Il23a, were upregulated, and 488 genes, including those that encode Lats1, Cacna2d1, Top2a, and Tfap2a, were downregulated. These genes are all involved in the regulation of prolactin expression. The gene expression of miR-126a-5p, which regulates the level of PRL in the pituitary gland, was screened by analysis prediction software and by a dual luciferase reporter system. The data presented in this study demonstrate that TRH can regulate prolactin synthesis and secretion through miR-126a-5p, thereby improving our understanding of the molecular mechanism of TRH-mediated PRL secretion and providing a theoretical basis for the role of miRNAs in regulating the secretion of pituitary hormones.


Asunto(s)
MicroARNs , Adenohipófisis , Animales , Ratas , MicroARNs/genética , MicroARNs/metabolismo , Adenohipófisis/metabolismo , Hormonas Hipofisarias/metabolismo , Prolactina/genética , Prolactina/metabolismo , Hormona Liberadora de Tirotropina/genética , Hormona Liberadora de Tirotropina/metabolismo
17.
Int J Med Sci ; 18(8): 1877-1885, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33746605

RESUMEN

miRNAs are a family of short, noncoding RNAs that are involved in many processes in melanoma cells. MITF acts as a master regulator of melanocyte function, development and survival by modulating various genes. Hydroxyurea (HU) is used to treat melanoma, and miRNA expression is altered after HU treatment in B16 melanoma cells. In this study, we screened for miRNAs that were upregulated after HU treatment and that targeted the MITF gene. We found that miR-7013-3p exhibited increased expression after HU treatment and could bind to MITF. miR-7013-3p inhibited melanin production, proliferation, and migration and promoted apoptosis in B16 melanoma cells. The results may provide more information on the roles of miR-7013-3p in B16 melanoma cells.


Asunto(s)
Hidroxiurea/farmacología , Melanoma/tratamiento farmacológico , MicroARNs/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Hidroxiurea/uso terapéutico , Melaninas/biosíntesis , Melanoma/genética , Melanoma/patología , Ratones , MicroARNs/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Regulación hacia Arriba/efectos de los fármacos
18.
Int J Med Sci ; 18(5): 1225-1239, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33526984

RESUMEN

Circular RNAs (circRNAs) are a new class of covalently closed circular RNA molecules that are involved in many biological processes. However, information about circRNAs in the pineal gland, particularly that of rats, is limited. To establish resources for the study of the rat pineal gland, we performed transcriptome analysis of the pineal glands during the day and night. In this study, 1413 circRNAs and 1989 miRNAs were identified in the pineal gland of rats during the night and day using the Illumina platform. Forty differentially expressed circRNAs and 93 differentially expressed miRNAs were obtained, among which 20 circRNAs and 37 miRNAs were significantly upregulated during the day and 20 circRNAs and 56 miRNAs were significantly upregulated during the night. As circRNAs have been reported to work as miRNA sponges, we predicted 15940 interactions among 40 circRNAs, 93 miRNAs and 400 mRNAs with differential diurnal expression using miRanda and TargetScan to build a ceRNA regulatory network in the rat pineal gland. The diurnal expression profile of circRNAs in the rat pineal gland may provide additional information about the role of circRNAs in regulating changes in melatonin circadian rhythms. The analyzed data reported in this study will be an important resource for future studies to elucidate the altered physiology of circRNAs in diurnal rhythms.


Asunto(s)
Ritmo Circadiano/genética , Redes Reguladoras de Genes , Melatonina/metabolismo , Glándula Pineal/metabolismo , ARN Circular/metabolismo , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/fisiología , Masculino , MicroARNs/metabolismo , Modelos Animales , Fotoperiodo , ARN Mensajero/genética , Ratas
19.
J Dairy Sci ; 104(1): 989-1001, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33162072

RESUMEN

The fat content of milk determines the quality of milk, and triglycerides are the major components of milk fat. Milk fat synthesis is regulated by many factors. Lipopolysaccharide (LPS) has been shown to inhibit milk fat synthesis in bovine mammary epithelial cells, but research on the underlying mechanisms has been limited. MicroRNA (miRNA) are involved in many physiological processes, but there have been few studies on their regulation in milk fat synthesis. In this study, we aimed to investigate whether LPS upregulates miR-27a-3p, which targets PPARG, thereby inhibiting the synthesis of triglycerides in a dairy cow mammary epithelial cell line (MAC-T). After LPS stimulation of MAC-T cells, PPARG gene expression and milk fat synthesis were inhibited. TargetScan software was used to predict miRNA targeting PPARG, and miR-27a-3p was selected as a candidate. A dual luciferase reporter assay further confirmed the targeting connection between miR-27a-3p and the PPARG gene. To investigate the functions of miR-27a-3p, miR-27a-3p mimic and inhibitors were transfected into MAC-T cells. The mRNA and protein levels of PPAR-γ were negatively correlated with the expression of miR-27a-3p. Lipid droplet accumulation and triglyceride synthesis were also negatively correlated with miR-27a-3p expression. Inhibition of miR-27a-3p partially reversed the LPS-induced decreases in PPARG expression and milk fat synthesis. In summary, our results reveal that LPS can inhibit MAC-T cell milk fat synthesis by upregulating miR-27a-3p, which targets the PPARG gene.


Asunto(s)
Lipopolisacáridos/farmacología , Glándulas Mamarias Animales/metabolismo , MicroARNs/metabolismo , PPAR gamma/genética , Triglicéridos/biosíntesis , Animales , Bovinos , Recuento de Células/veterinaria , Línea Celular , Células Epiteliales/metabolismo , Femenino , Leche/citología , PPAR gamma/metabolismo , ARN Mensajero/metabolismo , Activación Transcripcional , Regulación hacia Arriba
20.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34948427

RESUMEN

Kirsten rat sarcoma 2 viral oncogene homolog (Kras) is a proto-oncogene that encodes the small GTPase transductor protein KRAS, which has previously been found to promote cytokine secretion, cell survival, and chemotaxis. However, its effects on preadipocyte differentiation and lipid accumulation are unclear. In this study, the effects of KRAS inhibition on proliferation, autophagy, and adipogenic differentiation as well as its potential mechanisms were analyzed in the 3T3-L1 and C2C12 cell lines. The results showed that KRAS was localized mainly in the nuclei of 3T3-L1 and C2C12 cells. Inhibition of KRAS altered mammalian target of rapamycin (Mtor), proliferating cell nuclear antigen (Pcna), Myc, peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein beta (C/ebp-ß), diacylglycerol O-acyltransferase 1 (Dgat1), and stearoyl-coenzyme A desaturase 1 (Scd1) expression, thereby reducing cell proliferation capacity while inducing autophagy, enhancing differentiation of 3T3-L1 and C2C12 cells into mature adipocytes, and increasing adipogenesis and the capacity to store lipids. Moreover, during differentiation, KRAS inhibition reduced the levels of extracellular regulated protein kinases (ERK), c-Jun N-terminal kinase (JNK), p38, and phosphatidylinositol 3 kinase (PI3K) activation. These results show that KRAS has unique regulatory effects on cell proliferation, autophagy, adipogenic differentiation, and lipid accumulation.


Asunto(s)
Adipogénesis , Autofagia , Proliferación Celular , Fibroblastos/metabolismo , Mioblastos/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/fisiología , Transducción de Señal , Células 3T3 , Animales , Proteína beta Potenciadora de Unión a CCAAT/genética , Células Cultivadas , Diacilglicerol O-Acetiltransferasa/genética , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibroblastos/fisiología , Regulación de la Expresión Génica , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Metabolismo de los Lípidos , Ratones , Mioblastos/fisiología , PPAR gamma/genética , Antígeno Nuclear de Célula en Proliferación/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Estearoil-CoA Desaturasa/genética , Serina-Treonina Quinasas TOR/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA