Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 32(3): 2959-2971, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38297531

RESUMEN

The diffuse attenuation coefficient (Kd) is known to be closely related to the light transmittance of sea ice, which plays a critical role in the energy balance and biological processes of the upper ocean. However, the commercial instruments cannot easily measure Kd in sea ice because sea ice is a solid. The authors of this study are developing an instrument with a high spectral solution to measure the irradiance profile of sea ice and the irradiance in the atmosphere. Three Kd experiments were carried out, including two in-situ experiments in the Liaodong Bay and one in the laboratory. The results showed that the Kd of the sea ice varied with depth, and the values in adjacent sea ice layers differed by up to 2 times. In addition, due to changes in the climate environment, the Kd of sea ice showed temporal variations. For example, there was a 1.38-fold difference in the Kd values of the surface layer of sea ice at different times in 2022. The values in different sea ice layers also showed different trends over time, and the coefficient of determination (R2) of Kd between adjacent layers over time was as low as 0.008. To explain the driving mechanism of spatio-temporal variability of Kd, an additional experiment focusing on the physical microstructure of sea ice was conducted in Liaodong Bay in 2022. The result shows that the change in air bubbles in the sea ice may be the main the reason for the change in Kd. For example, when the sea ice was exchanging brine and bubbles with the atmosphere above and the seawater below, the highly absorbent particles in it tend to remain in their original position. Considering that the total absorption coefficient changed slightly, the bubbles with the characteristic of intense scattering were found to be the main factor influencing the Kd changes. This conclusion is supported by the fact that the value of R2 between the bubbles and Kd was 0.52. If climatic changes have led to an increase in the volume of bubbles, the more bubbles will increase the scattering properties of sea ice and lead to an increase in Kd. Conversely, the reduced bubble volume would reduce the scattering properties of sea ice, which in turn would reduce Kd.

2.
J Chem Phys ; 160(6)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38341789

RESUMEN

The microscopic mechanism of the energy transfer in cyclotrimethylene trinitramine (RDX) is of particular importance for the study of the energy release process in high-energy materials. In this work, an effective vibrational Hamiltonian based on normal modes (NMs) has been introduced to study the energy transfer process of RDX. The results suggest that the energy redistribution in RDX can be characterized as an ultrafast process with a time scale of 25 fs, during which the energy can be rapidly localized to the -NNO2 twisting mode (vNNO2), the N-N stretching mode (vN-N), and the C-H stretching mode (vC-H). Here, the vNNO2 and vN-N modes are directly related to the cleavage and dissociation of the N-N bond in RDX and, therefore, can be referred to as "active modes." More importantly, we found that the energy can be rapidly transferred from the vC-H mode to the vNNO2 mode due to their strong coupling. From this perspective, the vC-H mode can be regarded as an "energy collector" that plays a pivotal role in supplying energy to the "active modes." In addition, the bond order analysis shows that the dissociation of the N-N bonds of RDX follows a combined twisting and stretching path along the N-N bond. This could be an illustration of the further exothermic decomposition triggered by the accumulation of vibrational energy. The present study reveals the microscopic mechanism for the vibrational energy redistribution process of RDX, which is important for further investigation of the energy transfer process in high-energy materials.

3.
Phys Chem Chem Phys ; 25(35): 23555-23567, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37655706

RESUMEN

There is an urgent need for highly effective therapeutic agents to interrupt the continued spread of SARS-CoV-2. As a pivotal protease in the replication process of coronaviruses, the 3CLpro protein is considered as a potential target of drug development to stop the spread and infection of the virus. In this work, molecular dynamics (MD) simulations were used to elucidate the molecular mechanism of a novel and highly effective non-covalent inhibitor, WU-04, targeting the SARS-CoV-2 3CLpro protein. The difference in dynamic behavior between the apo-3CLpro and the holo-3CLpro systems suggests that the presence of WU-04 inhibits the motion amplitude of the 3CLpro protein relative to the apo-3CLpro system, thus maintaining a stable conformational binding state. The energy calculations and interaction analysis show that the hot-spot residues Q189, M165, M49, E166, and H41 and the warm-spot residues H163 and C145 have a strong binding capacity to WU-04 by forming multiple hydrogen bonds and hydrophobic interactions, which stabilizes the binding of the inhibitor. After that, the resistance of WU-04 to the six SARS-CoV-2 variants (Alpha, Beta, Gamma, Delta, Lambda, and Omicron) and two other mainstream coronavirus (SARS-CoV and MERS-CoV) 3CLpro proteins was further investigated. Excitingly, the slight difference in energy values relative to the SARS-CoV-2 system indicates that WU-04 is still highly effective against the coronaviruses, which becomes crucial evidence that WU-04 is a pan-inhibitor of the 3CLpro protein in various SARS-CoV-2 variants and other mainstream coronaviruses. The study will hopefully provide theoretical insights for the future rational design and improvement of novel non-covalent inhibitors targeting the 3CLpro protein.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , SARS-CoV-2
4.
Phys Chem Chem Phys ; 25(3): 2304-2319, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36597957

RESUMEN

Since the COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), SARS-CoV-2 has evolved by acquiring genomic mutations, resulting in the recent emergence of several SARS-CoV-2 variants with improved transmissibility and infectivity relative to the original strain. An underlying mechanism may be the increased ability of the mutants to bind the receptor proteins and infect the host cell. In this work, we implemented all-atom molecular dynamics (MD) simulations to study the binding and interaction of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein singly (D614G), doubly (D614G + L452R and D614G + N501Y), triply (D614G + N501Y + E484K), and quadruply (D614G + N501Y + E484K + K417T) mutated variants with the human angiotensin-converting enzyme 2 (hACE2) receptor protein in the host cell. A combination of multiple analysis approaches elucidated the effects of mutations and the extent of molecular divergence from multiple perspectives, including the dynamic correlated motions, interaction patterns, dominant motions, free energy landscape, and charge distribution on the electrostatic potential surface between the hACE2 and all RBD variants. Moreover, free energy calculations using the MM/PBSA method evaluated the binding affinity between these RBD variants and hACE2. The results showed that the D614G + N501Y + E484K variant possessed the lowest free energy value (highest affinity) compared to the D614G + N501Y + E484K + K417T, D614G + L452R, D614G + N501Y, and D614G mutants. The residue-based energy decomposition also indicated that the energy contribution of residues at the mutation site to the total binding energy was highly variable. The interaction mechanisms between the different RBD variants and hACE2 elucidated in this study will provide some insights into the development of drugs targeting the new SARS-CoV-2 variants.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Simulación de Dinámica Molecular , Mutación , Pandemias , Unión Proteica , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética
5.
Phys Chem Chem Phys ; 25(21): 14711-14725, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37199217

RESUMEN

Omicron is a novel variant of SARS-CoV-2 that is currently spreading globally as the dominant strain. The virus first enters the host cell through the receptor binding domain (RBD) of the spike protein by interacting with the angiotensin-converting enzyme 2 (ACE2). Thus, the RBD protein is an ideal target for the design of drugs against the Omicron variant. Here, we designed several miniprotein inhibitors in silico to combat the SARS-CoV-2 Omicron variant using single- and double-point mutation approaches, based on the structure of the initial inhibitor AHB2. Also, two parallel molecular dynamics (MD) simulations were performed for each system to reproduce the calculated results, and the binding free energy was evaluated with the MM/PBSA method. The evaluated values showed that all inhibitors, including AHB2, M7E, M7E + M43W, and M7E + M43Y, were energetically more beneficial to the binding with the RBD than ACE2. In particular, the mutant inhibitor M7E + M43Y possessed the highest binding affinity to RBD and was selected as the most promising "best" inhibitor among all inhibitors. In addition, the combination of multiple analysis methods, such as free energy landscape analysis (FEL), principal component analysis (PCA), dynamic cross-correlation matrix analysis (DCCM), and hydrogen bond, salt bridge, and hydrophobic interaction analysis, also demonstrated that the mutations significantly affect the dynamical behavior and binding pattern of the inhibitor binding to the RBD protein. The current work suggested that miniprotein inhibitors can form stable complex structures with the RBD protein and exert a blocking or inhibitory effect on the SARS-CoV-2 variant Omicron. In conclusion, this study has identified several novel mutant inhibitors with enhanced affinity to the RBD protein, and provided potential guidance and insights for the rational design of therapeutic approaches for the new SARS-CoV-2 variant Omicron.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Humanos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Mutación , Unión Proteica
6.
Molecules ; 28(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37764388

RESUMEN

The concerted elimination reaction class of peroxyl-hydroperoxyl alkyl radicals (•OOQOOH) plays a crucial role in the low-temperature combustion of normal-alkyl cyclohexanes. The generation of the relatively unreactive HO2 radicals in this reaction is one of the factors leading to the negative temperature coefficient (NTC) behavior, which hinders the low-temperature oxidation of normal-alkyl cyclohexanes. In this study, 44 reactions are selected and divided into 4 different subclasses according to the nature of the carbon atom where the H atom is eliminated and the reaction center position. Utilizing the CBS-QB3 method, we compute the energy barriers for the concerted elimination reactions of peroxyl-hydroperoxyl alkyl radicals. Following this, we assess both the high-pressure limit and pressure-dependent rate constants for all reactions by applying TST and RRKM/ME theory. These calculations allow for the development of rate rules, which come to fruition through an averaging process involving the rate constants of representative reactions within each subclass. Our work provides accurate rate constants and rate rules for this reaction class, which can aid in constructing more accurate combustion mechanisms for normal-alkyl cyclohexanes.

7.
Langmuir ; 38(34): 10690-10703, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35984970

RESUMEN

The ongoing pandemic of COVID-19 caused by SARS-CoV-2 has become a global health problem. There is an urgent need to develop therapeutic drugs, effective therapies, and vaccines to prevent the spread of the virus. The virus first enters the host cell through the interaction between the receptor binding domain (RBD) of spike protein and the peptidase domain (PD) of the angiotensin-converting enzyme 2 (ACE2). Therefore, blocking the binding of RBD and ACE2 is a promising strategy to inhibit the invasion and infection of the virus in the host cell. In the study, we designed several miniprotein inhibitors against SARS-CoV-2 by single/double/triple-point mutant, based on the initial inhibitor LCB3. Molecular dynamics (MD) simulations and trajectory analysis were performed for an in-depth analysis of the structural stability, essential protein motions, and per-residue energy decomposition involved in the interaction of inhibitors with the RBD. The results showed that the inhibitors have adapted the protein RBD in the binding interface, thereby forming stable complexes. These inhibitors display low binding free energy in the MM/PBSA calculations, substantiating their strong interaction with RBD. Moreover, the binding affinity of the best miniprotein inhibitor, H6Y-M7L-L17F mutant, to RBD was ∼45 980 times (ΔG = RT ln Ki) higher than that of the initial inhibitor LCB3. Following H6Y-M7L-L17F mutant, the inhibitors with strong binding activity are successively H6Y-L17F, L17F, H6Y, and F30Y mutants. Our research proves that the miniprotein inhibitors can maintain their secondary structure and have a highly stable blocking (binding) effect on SARS-CoV-2. This study proposes novel miniprotein mutant inhibitors with enhanced binding to spike protein and provides potential guidance for the rational design of new SARS-CoV-2 spike protein inhibitors.


Asunto(s)
Antivirales , Diseño de Fármacos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2 , Antivirales/química , Sitios de Unión , Humanos , Simulación de Dinámica Molecular , Unión Proteica , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Tratamiento Farmacológico de COVID-19
8.
J Chem Inf Model ; 62(8): 1933-1941, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35389657

RESUMEN

Karrikins (KARs) have been identified as a class of smoke-derived plant growth regulators widely functioning among angiosperms. However, little is known about the mechanism by which these molecules trigger the relevant signal transduction. In this research, conventional molecular dynamics simulations were used to investigate the dynamical behavior of the apo- and holo-forms of the KAR receptor KAI2. The results show that the dynamic binding conformation of KAR1 in the active site is not completely consistent with that in the static crystal and is largely affected by the residue segment of the receptor, Tyr150-Asn180. The binding of the ligand with KAI2 changes the distribution of the electrostatic potential near the active site and drives the conformational transition of the Tyr150-Asn180 segment with strong internal positive correlation. A "dual induction" signaling mechanism is proposed in view of the present calculations. Our work paves way for in-depth understanding of the KAR signal transduction mechanism and sheds light on further experimental and theoretical exploration.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Transducción de Señal , Proteínas Portadoras/metabolismo , Dominio Catalítico , Ligandos , Reguladores del Crecimiento de las Plantas/metabolismo
9.
Phys Chem Chem Phys ; 24(8): 5144-5153, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35156962

RESUMEN

The excited state intramolecular proton transfer (ESIPT) reactions and the fluorescence emission spectra of o-aminoaldehyde and o-aminoketone derivatives were systematically studied with density functional theory (DFT) and time-dependent density functional theory (TDDFT). The results suggest that the ESIPT process can be characterized as an ultra-fast process and that N-H vibration plays an important role in fluorescence emissions. The minimum energy pathways (MEP) on the excited states along the proton transfer coordinates (N-H vibration) were constructed for both o-aminoaldehyde and o-aminoketone derivatives, respectively, which showed a small barrier between the normal and tautomer (ESIPT) structures. By comparing the proton transfer barriers (Eb) and the N-H reorganization energies (λeleNH), we find that λeleNH is less than Eb in o-aminoketone derivatives, while λeleNH is greater than Eb in o-aminoaldehyde derivatives. It is clear that protons could move freely in o-aminoaldehyde derivatives, and thus only one normal emission band could be observed. Subsequently, the fluorescence emission spectra upon introduction of the N-H vibration effect can further confirm this mechanism, and the simulated spectra are in good agreement with the experimental observations, in which the o-aminoaldehyde derivatives have only one normal emission band while the o-aminoketone derivatives have two emission bands corresponding to the normal and tautomer structures. Consequently, this work can elucidate the lack of the ESIPT band in o-aminoaldehyde derivatives and also offer new insight into ESIPT by considering the vibronic effect.

10.
J Phys Chem A ; 126(27): 4424-4431, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35763759

RESUMEN

The detailed mechanism of photoinduced dearomatization of benzenoid arenes is investigated using both the high-level ab initio method and density functional theory. The results suggest that the optically allowed singlet excited state (S2) can quickly decay to the lowest triplet excited state (T1) through a barrierless internal conversion and intersystem crossing. Importantly, we find a triplet excited state intramolecular proton transfer (T-ESIPT) pathway to produce a diradical triplet intermediate (3MO-H), which can trigger the subsequent [4 + 2] dearomatization reaction. Furthermore, the diastereoselectivity of the reaction was illustrated by the rotation of the O-H group of 3MO-H, which could be effectively modulated by the solvent effect (arising from the strength of the intermolecular hydrogen bond) and the substituted effect (arising from the strength of the electron-donation group). This photochemical mechanism can explain well the experimental observations, and the novel T-ESIPT process can open a new door in studying the photoinduced proton transfer reactions.

11.
Sensors (Basel) ; 22(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35458974

RESUMEN

With the boom in artificial intelligence (AI) and Internet-of-Things (IoT), thousands of smart devices are interconnected with each other and deeply applied into human society. This prosperity has significantly improved public service and management, which were traditionally based on manual work. As a notable scenario, librarianship has embraced an era of "Smart Libraries" enabled by AI and IoT. Unlike existing surveys, our work comprehensively overviews the AI- and IoT-based technologies in three fundamental aspects: smart service, smart sustainability, and smart security. We then further highlight the trend towards future smart libraries.


Asunto(s)
Inteligencia Artificial , Internet de las Cosas , Humanos , Tecnología
12.
Phys Chem Chem Phys ; 23(11): 6685-6694, 2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33710217

RESUMEN

Angiotensin-converting enzyme (ACE) is a well-known zinc metalloenzyme whose physiological functions are vital to blood pressure regulation and management of hypertension. The development of more efficient peptide inhibitors is of great significance for the prevention and treatment of hypertension. In this research, molecular dynamics (MD) simulations were implemented to study the specific binding mechanism and interaction between human ACE (hACE) and tetrapeptides, YIHP, YKHP, YLVR, and YRHP. The calculation of relative binding free energy on the one hand verified that YLVR, an experimentally identified inhibitor, has a stronger inhibitory effect and, on the other hand, indicated that YRHP is the "best" inhibitor with the strongest binding affinity. Inspection of atomic interactions discriminated the specific binding mode of each tetrapeptide inhibitor with hACE and explained the difference of their affinity. Moreover, in-depth analysis of the MD production trajectories, including clustering, principal component analysis, and dynamic network analysis, determined the dynamic correlation between tetrapeptides and hACE and obtained the communities' distribution of a protein-ligand complex. The present study provides essential insights into the binding mode and interaction mechanism of the hACE-peptide complex, which paves a path for designing effective anti-hypertensive peptides.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/química , Simulación de Dinámica Molecular , Oligopéptidos/química , Peptidil-Dipeptidasa A/química , Secuencia de Aminoácidos , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Sitios de Unión , Humanos , Oligopéptidos/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Termodinámica
13.
Zhongguo Yi Liao Qi Xie Za Zhi ; 44(6): 495-498, 2020 Dec 08.
Artículo en Zh | MEDLINE | ID: mdl-33314856

RESUMEN

A rehabilitation equipment is developed by mechanical and electronic engineering principle based on the need of rehabilitation training for patients with paraplegia. The device can prevent complications such as palsy bedsores and deep venous thrombosis. The device effectively reduces the labor intensity of the rehabilitation staff or family members to carry the patient's body, and promotes the physical and psychological rehabilitation progress of patients with lower limb paralysis.


Asunto(s)
Posición de Pie , Rehabilitación de Accidente Cerebrovascular/instrumentación , Caminata , Humanos , Extremidad Inferior
14.
J Chem Inf Model ; 59(4): 1554-1562, 2019 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-30884225

RESUMEN

Karrikins (KARs) are a class of smoke-derived seed germination stimulants with great significance in both agriculture and plant biology. By means of direct binding to the receptor protein KAI2, the compounds can initiate the KAR signal transduction pathway, hence triggering germination of the dormant seeds in the soil. In the research, several molecular dynamics (MD) simulation techniques were properly integrated to investigate the binding process of KAR1 to KAI2 and reveal the details of the whole binding event. The calculated binding free energy, -7.00 kcal/mol, is in good agreement with the experimental measurement, -6.83 kcal/mol. The obtained PMF profile indicates the existence of three intermediate states in the binding process. The analysis of the simulation trajectories demonstrates that, in the intermediate structures, KAR1 is stabilized by some hydrophobic residues (Phe26, Phe134, Leu142, Trp153, Phe157, Leu160, Phe194), along with several bridging water molecules, and meanwhile, the significant shifting occurs in the local conformation of the protein as the ligand's binding. A series of the residues (Gln141-Phe157) on the so-called "cap domain" are proposed to be responsible for capturing the ligand at the initial stage of the binding. Besides, the changes of the ligand's poses are also quantitatively characterized by the proper choice of the coordinate system. Our work will contribute to the more penetrating understanding of the ligand binding process and the receptor affinity difference between several members in the KAR family and help design new, more effective germination stimulants.


Asunto(s)
Germinación , Simulación de Dinámica Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Unión Proteica , Conformación Proteica , Termodinámica
15.
World J Microbiol Biotechnol ; 35(11): 179, 2019 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-31707486

RESUMEN

High concentration restaurant oily wastewater from restaurants and food processing industries discharged into water environment usually results in environment pollution and inhibits the activity of microorganisms in biological wastewater treatment systems. In this study, 75 strains from oily sludge were isolated with oil degradation activity for edible oil-contained wastewater. Eight isolates were able to grow well in liquid cultures with edible oil as the sole carbon source and discovered with high efficient oil-degrading ability. Seven out of eight isolates were identified as Acinetobacter and one isolate as Kluyvera cryocrescens, based on their 16S rRNA gene sequences. Three highly efficient oil degrading bacteria (Acinetobacter dijkshoorniae LYC46-2, Kluyvera cryocrescens LYC50-1a and Acinetobacter pittii LYC73-4b) were selected and their degradation characteristic were examined, the results showed that the three isolates were effective under pH range from 7.0 to 10.0, and temperature from 25 to 35 °C. For degradation of 2-4% (v/v) of vegetable oil, > 85% degradation percentage were obtained within 30 h. Degradation of the higher concentration oil (6-8%, v/v) result in 50-70% degradation percentage within 72 h, and the degradation percentage for the isolated strains were decreased about 50% for the degradation of 10% oil (< 45%) compared to 2% oil. Different type of oils were also tested, > 90% of degradation percentage were obtained by the three isolates, implied that these strains are capable of removing various oils efficiently. These results suggested that Acinetobacter dijkshoorniae LYC46-2, Kluyvera cryocrescens LYC50-1a and Acinetobacter pittii LYC73-4b are potential species could be efficiently used for high concentration restaurant oily wastewater treatment and might be applicable to a wastewater treatment system for the removal of oil.


Asunto(s)
Bacterias/aislamiento & purificación , Restaurantes , Aguas del Alcantarillado/microbiología , Aguas Residuales/microbiología , Acinetobacter/genética , Acinetobacter/aislamiento & purificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Biodegradación Ambiental , Concentración de Iones de Hidrógeno , Kluyvera/genética , Kluyvera/aislamiento & purificación , Filogenia , Aceites de Plantas , ARN Ribosómico 16S/genética , Temperatura
16.
Mol Cell Biochem ; 441(1-2): 99-108, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28884413

RESUMEN

The long non-coding RNA (lncRNA) prostate cancer-associated ncRNA transcript 1 (PCAT-1) has been shown to promote prostate cancer cell proliferation through c-Myc and is associated with the poor prognosis of CRC patients. In the current study, it was hypothesized that the effect of PCAT-1 on the aggressiveness of CRC cells was dependent on the function of c-Myc. Human CRC cell lines Caco-2 and HT-29 were transfected with specific PCAT-1 shRNAs, and cell migration, invasiveness, and resistance to 5-fluorouracil were measured. To elucidate the role of c-Myc in PCAT-1 function, c-Myc was overexpressed in PCAT-1-silenced CRC cells and the effect of c-Myc overexpression on the aggressiveness of PCAT-1-silenced cells was detected. The results showed that knockdown of PCAT-1 in CRC cells suppressed cell motility and invasiveness, and sensitized the cells to 5-fluorouracil, as evidenced by the reduced viability and induced apoptosis in PCAT-1-silenced cells compared to the parental cells in response to 5-fluorouracil treatment. The expression of c-Myc in PCAT-1-silenced CRC cells was down-regulated, and forced expression of c-Myc partially restored the invasiveness in PCAT-1-silenced cells. In summary, the findings outlined in the current study suggest that PCAT-1 regulates the invasiveness and drug resistance in CRC cells and that PCAT-1 may promote CRC cell invasion by modulating the expression of c-Myc.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Proteínas Proto-Oncogénicas c-myc/biosíntesis , ARN Neoplásico/metabolismo , Células CACO-2 , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Técnicas de Silenciamiento del Gen , Humanos , Invasividad Neoplásica , Proteínas Proto-Oncogénicas c-myc/genética , ARN Largo no Codificante , ARN Neoplásico/genética
17.
Sensors (Basel) ; 17(5)2017 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-28492469

RESUMEN

Blade tip timing is an effective method for blade vibration measurements in turbomachinery. This method is increasing in popularity because it is non-intrusive and has several advantages over the conventional strain gauge method. Different kinds of sensors have been developed for blade tip timing, including optical, eddy current and capacitance sensors. However, these sensors are unsuitable in environments with contaminants or high temperatures. Microwave sensors offer a promising potential solution to overcome these limitations. In this article, a microwave sensor-based blade tip timing measurement system is proposed. A patch antenna probe is used to transmit and receive the microwave signals. The signal model and process method is analyzed. Zero intermediate frequency structure is employed to maintain timing accuracy and dynamic performance, and the received signal can also be used to measure tip clearance. The timing method uses the rising and falling edges of the signal and an auto-gain control circuit to reduce the effect of tip clearance change. To validate the accuracy of the system, it is compared experimentally with a fiber optic tip timing system. The results show that the microwave tip timing system achieves good accuracy.

18.
Yi Chuan ; 39(4): 293-301, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28420608

RESUMEN

Plasma membrane intrinsic proteins (PIPs) are plant channel proteins located on the plasma membrane. PIPs transfer water, CO2 and small uncharged solutes through the plasma membrane. PIPs have high selectivity to substrates, suggestive of a central role in maintaining cellular water balance. The expression, activity and localization of PIPs are regulated at the transcriptional and post-translational levels, and also affected by environmental factors. Numerous studies indicate that the expression patterns and localizations of PIPs can change in response to abiotic stresses. In this review, we summarize the mechanisms of PIP trafficking, transcriptional and post-translational regulations, and abiotic stress responses. Moreover, we also discuss the current research trends and future directions on PIPs.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Acuaporinas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología
19.
Biochim Biophys Acta ; 1848(10 Pt A): 2013-21, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26025587

RESUMEN

Cytochrome P450 (CYP) 17A1 is a dual-function monooxygenase with a critical role in the synthesis of many human steroid hormones. The enzyme is an important target for treatment of breast and prostate cancers that proliferate in response to estrogens and androgens. Despite the crystallographic structures available for CYP17A1, no membrane-bound structural features of this enzyme at atomic level are available. Accumulating evidence has indicated that the interactions between bounded CYPs and membrane could contribute to the recruitment of lipophilic substrates. To this end, we have investigated the effects on structural characteristics in the presence of the membrane for CYP17A1. The MD simulation results demonstrate a spontaneous insertion process of the enzyme to the lipid. Two predominant modes of CYP17A1 in the membrane are captured, characterized by the depths of insertion and orientations of the enzyme to the membrane surface. The measured heme tilt angles show good consistence with experimental data, thereby verifying the validity of the structural models. Moreover, conformational changes induced by the membrane might have impact on the accessibility of the active site to lipophilic substrates. The dynamics of internal aromatic gate formed by Trp220 and Phe224 are suggested to regulate tunnel opening motions. The knowledge of the membrane binding characteristics could guide future experimental and computational works on membrane-bound CYPs so that various investigations of CYPs in their natural, lipid environment rather than in artificially solubilized forms may be achieved.


Asunto(s)
Membrana Dobles de Lípidos/química , Fluidez de la Membrana , Modelos Químicos , Simulación de Dinámica Molecular , Esteroide 17-alfa-Hidroxilasa/química , Esteroide 17-alfa-Hidroxilasa/ultraestructura , Sitios de Unión , Simulación por Computador , Unión Proteica , Conformación Proteica
20.
J Chem Inf Model ; 56(8): 1539-46, 2016 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-27472561

RESUMEN

Substrate transport across a membrane accomplished by a secondary active transporter (SAT) is essential to the normal physiological function of living cells. In the present research, a series of all-atom molecular dynamics (MD) simulations under different electric field (EF) strengths was performed to investigate the effect of an external EF on the substrate transport of an SAT. The results show that EF both affects the interaction between substrate and related protein's residues by changing their conformations and tunes the timeline of the transport event, which collectively reduces the height of energy barrier for substrate transport and results in the appearance of two intermediate conformations under the existence of an external EF. Our work spotlights the crucial influence of external EFs on the substrate transport of SATs and could provide a more penetrating understanding of the substrate transport mechanism of SATs.


Asunto(s)
Electricidad , Simulación de Dinámica Molecular , Transporte Biológico , Membrana Celular/metabolismo , Conformación Molecular , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA