Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell Physiol ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727547

RESUMEN

Brassinosteroids (BRs) are a group of polyhydroxylated phytosterols that play essential roles in regulating plant growth and development as well as stress adaptation. It is worth noting that BRs do not function alone, but rather they crosstalk with other endogenous signaling molecules, including the phytohormones auxin, cytokinins (CKs), gibberellins (GAs), abscisic acid (ABA), ethylene (ET), jasmonates (JAs), salicylic acid (SA), and strigolactones (SLs), forming elaborate signaling networks to modulate plant growth and development. BRs interact with other phytohormones mainly by regulating each others' homeostasis, transport, or signaling pathway at the transcriptional and posttranslational levels. In this review, we focus our attention on current research progress in BR signal transduction and the crosstalk between BRs and other phytohormones.

2.
BMC Plant Biol ; 24(1): 410, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760710

RESUMEN

Rosa roxburghii Tratt, a valuable plant in China with long history, is famous for its fruit. It possesses various secondary metabolites, such as L-ascorbic acid (vitamin C), alkaloids and poly saccharides, which make it a high nutritional and medicinal value. Here we characterized the chromosome-level genome sequence of R. roxburghii, comprising seven pseudo-chromosomes with a total size of 531 Mb and a heterozygosity of 0.25%. We also annotated 45,226 coding gene loci after masking repeat elements. Orthologs for 90.1% of the Complete Single-Copy BUSCOs were found in the R. roxburghii annotation. By aligning with protein sequences from public platform, we annotated 85.89% genes from R. roxburghii. Comparative genomic analysis revealed that R. roxburghii diverged from Rosa chinensis approximately 5.58 to 13.17 million years ago, and no whole-genome duplication event occurred after the divergence from eudicots. To fully utilize this genomic resource, we constructed a genomic database RroFGD with various analysis tools. Otherwise, 69 enzyme genes involved in L-ascorbate biosynthesis were identified and a key enzyme in the biosynthesis of vitamin C, GDH (L-Gal-1-dehydrogenase), is used as an example to introduce the functions of the database. This genome and database will facilitate the future investigations into gene function and molecular breeding in R. roxburghii.


Asunto(s)
Cromosomas de las Plantas , Genoma de Planta , Rosa , Rosa/genética , Rosa/metabolismo , Cromosomas de las Plantas/genética , Bases de Datos Genéticas , Metabolismo Secundario/genética , Ácido Ascórbico/metabolismo , Ácido Ascórbico/biosíntesis
3.
Plant Physiol ; 193(2): 1561-1579, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37467431

RESUMEN

An apical hook is a special structure formed during skotomorphogenesis in dicotyledonous plant species. It is critical for protecting the shoot apical meristem from mechanical damage during seed germination and hypocotyl elongation in soil. Brassinosteroid (BR) and jasmonate (JA) phytohormones antagonistically regulate apical hook formation. However, the interrelationship between BRs and JAs in this process has not been well elucidated. Here, we reveal that JAs repress BRs to regulate apical hook development in Arabidopsis (Arabidopsis thaliana). Exogenous application of methyl jasmonate (MeJA) repressed the expression of the rate-limiting BR biosynthetic gene DWARF4 (DWF4) in a process relying on 3 key JA-dependent transcription factors, MYC2, MYC3, and MYC4. We demonstrated that MYC2 interacts with the critical BR-activated transcription factor BRASSINAZOLE RESISTANT 1 (BZR1), disrupting the association of BZR1 with its partner transcription factors, such as those of the PHYTOCHROME INTERACTING FACTOR (PIF) family and downregulating the expression of their target genes, such as WAVY ROOT GROWTH 2 (WAG2), encoding a protein kinase essential for apical hook development. Our results indicate that JAs not only repress the expression of BR biosynthetic gene DWF4 but, more importantly, attenuate BR signaling by inhibiting the transcriptional activation of BZR1 by MYC2 during apical hook development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Analyst ; 149(12): 3346-3355, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38700251

RESUMEN

Microparticle rotation is an important process in biomedical engineering, such as biosensors, cell injection or cell morphology. Single particle rotation has been widely investigated, while rotation of particle chains has gained rare attention. In this paper, we utilize a noncontact manipulation method to rotate microparticle chains via electrorotation by designing an octuple-electrode array (OEA). Finite element simulations were conducted for analyzing the desired electrode field and optimizing the structure of microelectrode pairs. The direction of the electric field in the workspace is investigated with different voltage signal inputs through specially designed circuits. In the experiment, microparticles are driven to form several chains in the proposed electrode fields. With the rotation of the electric field, particle chains could be rotated synchronously. Automated rotation and detection of polystyrene microspheres and yeast cell chains are achieved using machine vision technology. Results show that the proposed method could be utilized to rotate ordered microparticles with an appropriate input signal.

5.
Environ Sci Technol ; 58(15): 6781-6792, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38560895

RESUMEN

Predicting the hotspots of antimicrobial resistance (AMR) in aquatics is crucial for managing associated risks. We developed an integrated modeling framework toward predicting the spatiotemporal abundance of antibiotics, indicator bacteria, and their corresponding antibiotic-resistant bacteria (ARB), as well as assessing the potential AMR risks to the aquatic ecosystem in a tropical reservoir. Our focus was on two antibiotics, sulfamethoxazole (SMX) and trimethoprim (TMP), and on Escherichia coli (E. coli) and its variant resistant to sulfamethoxazole-trimethoprim (EC_SXT). We validated the predictive model using withheld data, with all Nash-Sutcliffe efficiency (NSE) values above 0.79, absolute relative difference (ARD) less than 25%, and coefficient of determination (R2) greater than 0.800 for the modeled targets. Predictions indicated concentrations of 1-15 ng/L for SMX, 0.5-5 ng/L for TMP, and 0 to 5 (log10 MPN/100 mL) for E. coli and -1.1 to 3.5 (log10 CFU/100 mL) for EC_SXT. Risk assessment suggested that the predicted TMP could pose a higher risk of AMR development than SMX, but SMX could possess a higher ecological risk. The study lays down a hybrid modeling framework for integrating a statistic model with a process-based model to predict AMR in a holistic manner, thus facilitating the development of a better risk management framework.


Asunto(s)
Antibacterianos , Escherichia coli , Antibacterianos/farmacología , Ecosistema , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Combinación Trimetoprim y Sulfametoxazol , Farmacorresistencia Microbiana , Bacterias
6.
Semin Cancer Biol ; 80: 18-38, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-31935456

RESUMEN

Scavenger receptor class B type I (SR-BI) protein is an integral membrane glycoprotein. SR-BI is emerging as a multifunctional protein, which regulates autophagy, efferocytosis, cell survival and inflammation. It is well known that SR-BI plays a critical role in lipoprotein metabolism by mediating cholesteryl esters selective uptake and the bi-directional flux of free cholesterol. Recently, SR-BI has also been identified as a potential marker for cancer diagnosis, prognosis, or even a treatment target. Natural products are a promising source for the discovery of new drug leads. Multiple natural products were identified to regulate SR-BI protein expression. There are still a number of challenges in modulating SR-BI expression in cancer and in using natural products for modulation of such protein expression. In this review, our purpose is to discuss the relationship between SR-BI protein and cancer, and the molecular mechanisms regulating SR-BI expression, as well as to provide an overview of natural products that regulate SR-BI expression.


Asunto(s)
Productos Biológicos , Neoplasias , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Antígenos CD36/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Receptores Inmunológicos/metabolismo , Receptores Depuradores de Clase B/metabolismo
7.
Small ; 19(4): e2205735, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36437051

RESUMEN

The construction of hollow metallic microspheres with rationally designed building blocks of the metal shell is a promising way to achieve low density and functionality control, but the microengineering of the metallic structures on a micrometer spherical surface is a great challenge. In the present work, a novel and simple calcination-induced aggregation strategy is developed to realize the distribution status and microstructure control of Co-Cu bimetal building blocks assembled on a hollow glass microsphere support, and thus a series of low-density (0.58 g cm-3 ) dual shell composite hollow microspheres are constructed with gradient in electromagnetic property depending on the calcination temperature (CT). The optimized microwave shielding performance can be achieved at a CT of 500 °C, while further increasing CT to 700 °C leads to an interesting conversion from microwave shielding to absorption with an optimized effective absorption bandwidth of 4.64 GHz at a low matching thickness of 1.33 mm. The mechanism underlying the CT-dependent metallic shell structure variation and further the decisive effect of the shell structure on the microwave response behavior are proposed based on a series of contrast experiments.

8.
Cancer Cell Int ; 23(1): 142, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468908

RESUMEN

Numerous mechanisms have shown that long noncoding RNAs (lncRNAs) promote the development of colorectal cancer (CRC), but the role of lnc-LRRTM4 in the progression of CRC remains unclear. In this article, we found that lnc-LRRTM4 was highly expressed in CRC tissues and cell lines and that lnc-LRRTM4 could promote the proliferation and metastasis of CRC cells. These consequences were achieved by lnc-LRRTM4 directly binding to the promoter of LRRTM4 to induce its transcription. Moreover, lnc-LRRTM4 enhanced the growth of CRC cells in vivo by promoting cell cycle progression and reducing apoptosis. Taken together, our results revealed that lnc-LRRTM4 promotes the proliferation and metastasis of CRC cells, suggesting that it may be a potential diagnostic and therapeutic target for CRC.

9.
Crit Rev Food Sci Nutr ; : 1-15, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36655469

RESUMEN

Osteoporosis commonly occurs in the older people and severe patients, with the main reason of the imbalance of bone metabolism (the rate of bone resorption exceeding the rate of bone formation), resulting in a decrease in bone mineral density and destruction of bone microstructure and further leading to the increased risk of fragility fracture. Recent studies indicate that protein nutritional support is beneficial for attenuating osteoporosis and improving bone health. This review summarized the classical mechanisms of protein intervention for alleviating osteoporosis on both suppressing bone resorption and regulating bone formation related pathways (promoting osteoblasts generation and proliferation, enhancing calcium absorption, and increasing collagen and mineral deposition), as well as the potential novel mechanisms via activating autophagy of osteoblasts, altering bone related miRNA profiles, regulating muscle-bone axis, and modulating gut microbiota abundance. Protein nutritional intervention is expected to provide novel approaches for the prevention and adjuvant therapy of osteoporosis.

10.
Appl Microbiol Biotechnol ; 107(17): 5517-5529, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37421471

RESUMEN

Maintaining a healthy status is crucial for the successful captive breeding of endangered alpine musk deer (Moschus chrysogaster, AMD), and captive breeding programs are beneficial to the ex-situ conservation and wild population recovery of this species. Meanwhile, the gut microbiota is essential for host health, survival, and environmental adaptation. However, changes in feeding environment and food can affect the composition and function of gut microbiota in musk deer, ultimately impacting their health and adaptation. Therefore, regulating the health status of wild and captive AMD through a non-invasive method that targets gut microbiota is a promising approach. Here, 16S rRNA gene sequencing was employed to reveal the composition and functional variations between wild (N = 23) and captive (N = 25) AMD populations. The results indicated that the gut microbiota of wild AMD exhibited significantly higher alpha diversity (P < 0.001) and greater abundance of the phylum Firmicutes, as well as several dominant genera, including UCG-005, Christensenellaceae R7 group, Monoglobus, Ruminococcus, and Roseburia (P < 0.05), compared to captive AMD. These findings suggest that the wild AMD may possess more effective nutrient absorption and utilization, a more stable intestinal microecology, and better adaption to the complex natural environment. The captive individuals displayed higher metabolic functions with an increased abundance of the phylum Bacteroidetes and certain dominant genera, including Bacteroides, Rikenellaceae RC9 gut group, NK4A214 group, and Alistipes (P < 0.05), which contributed to the metabolic activities of various nutrients. Furthermore, captive AMD showed a higher level of 11 potential opportunistic pathogens and a greater enrichment of disease-related functions compared to wild AMD, indicating that wild musk deer have a lower risk of intestinal diseases and more stable intestinal structure in comparison to captive populations. These findings can serve as a valuable theoretical foundation for promoting the healthy breeding of musk deer and as a guide for evaluating the health of wild-released and reintroduced musk deer in the future. KEY POINTS: • Wild and captive AMD exhibit contrasting gut microbial diversity and certain functions. • With higher diversity, certain bacteria aid wild AMD's adaptation to complex habitats. • Higher potential pathogens and functions increase disease risk in captive AMD.


Asunto(s)
Ciervos , Microbioma Gastrointestinal , Humanos , Animales , Microbioma Gastrointestinal/genética , Ciervos/microbiología , ARN Ribosómico 16S/genética , Animales Salvajes/microbiología , Bacterias/genética , Bacteroidetes/genética , Clostridiales/genética
11.
Sensors (Basel) ; 23(9)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37177625

RESUMEN

Cutting force in lathe work is closely related to tool wear and affects the turning quality. Direct measurement of the cutting force by measuring the strain of the tool holder is challenging because the tool holder design aims to be highly rigid in order to undertake large cutting forces. Accordingly, the most popular dynamometer designs modify the standard tool holder by decreasing the structural rigidity of the holder, which reduces the machining precision and is not widely accepted. In order to solve the issue of the low stiffness of the dynamometer reducing the machining precision, in this paper, the ultra-low strain on the tool holder was successfully detected by the highly sensitive semiconductor strain gauges (SCSG) adjacent to the blade cutting insert. However, the cutting process would generate much heat, which increases the force measuring area temperature of the tool holder by about 30 °C. As a result, the readout drifted significantly with the temperature changes due to the high temperature coefficient of SCSG. To solve this problem, the temperature on the tool holder was monitored and a BP neural network was proposed to compensate for temperature drift errors. Our methods improved the sensitivity (1.14 × 10-2 mV/N) and the average relative error of the BP neural network prediction (≤1.48%) while maintaining the original stiffness of the tool holder. The smart tool holder developed possesses high natural frequency (≥6 kHz), it is very suitable for dynamic cutting-force measurement. The cutting experiment data in the lathe work show comparable performance with the traditional dynamometers and the resolution of the smart tool holder is 2 N (0.25% of total range).

12.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37686256

RESUMEN

Two undescribed ent-kaurene diterpenes, named guidongnins I (1) and J (2), were isolated from the medicinal plant Isodon rubescens. Compound 1 was determined to contain an unprecedented 23 carbons in the skeleton by bearing an extra isopropyl group at C-17 out of the diterpenoid parent structure, and compound 2 was the first example of 6,7-seco-7,20-olide-ent-kaurenes with two fused-tetrahydrofuran rings formed between C-6 and C-19/C-20 through oxygen bridges. Their structures, including their absolute configurations, were determined using the analyses of the spectroscopic and X-ray diffraction data. Guidongnins I (1) and J (2) were assessed for their anti-cancer activities against the growth of various cancer cell lines, and 2 displayed cytotoxic potency against HepG2 at IC50 27.14 ± 3.43 µM.


Asunto(s)
Diterpenos de Tipo Kaurano , Diterpenos , Isodon , Diterpenos de Tipo Kaurano/farmacología , Diterpenos/farmacología , Carbono , Línea Celular
13.
J Environ Manage ; 325(Pt B): 116557, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36308952

RESUMEN

The impact of climate change on nearshore coastal water quality and its interaction with pollution prevention efforts (e.g., the development of green and gray water infrastructure) still lack systematic investigation. This study performed a holistic analysis of the impact of climate change on the salinity and concentrations of total nitrogen (TN), total phosphorus (TP) and chlorophyll a (Chl.a) in Shenzhen Bay between Shenzhen and Hong Kong, the two most developed megacities in South China, based on three-dimensional hydrodynamic and water quality modeling. The major study findings were as follows. First, Chl.a was the most sensitive parameter, and its bay-wide average concentration in 2100 was predicted to be approximately 13% and 46% higher than those in 2015 under mild and rapid climate change scenarios, respectively. Second, sea level rise was found to be a major driver of all four water quality parameters, while temperature and radiation mainly influenced Chl.a and precipitation mainly influenced nutrients. Third, water quality responses to climate change were highly heterogeneous over the bay. Even under a mild climate change scenario, the highest location-specific changes (2100 vs. 2015) in salinity and TN, TP and Chl.a concentrations were projected to be approximately 21%, 19%, 25%, and 65%, respectively. Fourth, changes in seasonal variation due to climate change may lead to an enhanced ecological risk of algal blooms. Finally, the effect of reducing TN and TP concentrations by proposed water infrastructure development was found to be significantly weakened (nearly 40% and 20% for TN and TP, respectively, under a mild climate change scenario), while the negative effect (i.e., increase in the Chl.a concentration) was notably accelerated. Regional cooperation is critical for protecting the water quality of the bay, particularly under climate change. The insights obtained in this study are applicable to other coastal water zones around the world with similar socioeconomic backgrounds and climatic conditions.


Asunto(s)
Cambio Climático , Calidad del Agua , Clorofila A/análisis , Ríos/química , Monitoreo del Ambiente/métodos , Clorofila , Eutrofización , Fósforo/análisis , Nitrógeno/análisis , China
14.
J Environ Manage ; 326(Pt B): 116730, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36399808

RESUMEN

The increasing occurrence of cyanobacteria blooms is of global concern, and is often associated with environmental and socio-economic problems, such as degenerated ecosystems and aquaculture impairment. The diazotrophic cyanobacterium Raphidiopsis raciborskii (R. raciborskii) grows rapidly in the tropics, and produces the toxin, cylindrospermopsin (CYN), which has harmful effects on aquatic organisms. Thus, to protect water quality and ecosystem, it is essential to have rapid and reliable methods for cyanobacteria and R. raciborskii detection and prediction so that early warning can be provided for management. Molecular assays, such as PCR, real-time quantitative PCR (qPCR), two-step PCR assays are accurate and widely used, but still require several hours from sample preparation to data analysis. In this study, insulated isothermal PCR (iiPCR) assays in conjunction with fast DNA extraction method, were developed and verified as a rapid detection assay in detecting cyanobacteria and R. raciborskii within 50 min, and also with high detection accuracy (98.8%) and the overall high agreement level (98.8%, k = 97.5%)) comparing to conventional qPCR assay. However, the limitation of the iiPCR assay is that it only generates qualitative results. Therefore, the quantified iiPCR assay, named as A-iiPCR, by coupling iiPCR device with fluorescence signal catching and interpretation instrument (Andor spectrometer with Solis spectroscopy software) was developed and verified with in situ environmental samples. The fluorescence intensity decreased accordingly with the drop of DNA concentration until reaching 1.32 ng/µL. Also, Delft 3D modelling was established to simulate R. raciborskii change in predicting spatial and temporal variabilities for reservoir management, as the simulated R. raciborskii concentration was the highest at sampling site 1, as well as temporally highest in April and October, posing as the most high-risk location and time periods for R. raciborskii bloom-forming requiring corresponding governance measures.


Asunto(s)
Cianobacterias , Ecosistema , Reacción en Cadena de la Polimerasa/métodos
15.
J Sci Food Agric ; 103(13): 6252-6262, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37160715

RESUMEN

BACKGROUND: The dangerous inducers of muscle atrophy are inflammatory reaction, oxidative stress, and cachexia, etc. ß-Glucan, an important food derived active ingredient, has been reported to exert anti-inflammatory effects, however, its effects on regulating myoblast differentiation and protein degradation are unclear. This study is aimed to investigate the mechanism of oat ß-glucan on alleviating muscle atrophy. RESULTS: The results showed that oat ß-glucan treatment reversed tumor necrosis factor-α (TNF-α) induced abnormal myoblast differentiation and reduced muscle atrophy related MuRF-1 and Atrogin-1 protein expression. The similar phenomenon was observed after using MCC950 (NLRP3 specific inhibitor) or AS1842856 (FoxO1 specific inhibitor) to suppress NLRP3 and FoxO1 expression, respectively. Exposure to ß-glucan or AS1842856 also inhibited TNF-α induced the activation of TLR4/NF-κB pathway by inactivating FoxO1, and subsequently suppressed the expression of NLRP3. CONCLUSION: Our results indicate that oat ß-glucan exerts essential roles in promoting myoblast differentiation and alleviating muscle atrophy via inactivating FoxO1 and NLRP3 inflammasome signal pathway. © 2023 Society of Chemical Industry.


Asunto(s)
Factor de Necrosis Tumoral alfa , beta-Glucanos , Humanos , Proteolisis , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Fibras Musculares Esqueléticas/metabolismo , beta-Glucanos/farmacología , beta-Glucanos/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo
16.
Crit Rev Food Sci Nutr ; 62(30): 8454-8466, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34028308

RESUMEN

Rice bran protein (RBP) is a plant protein obtained from rice bran, a byproduct produced during rice milling process. It has been proved to be a high quality protein due to containing all of the essential amino acids and the content closing to the FAO/WHO recommended ideal pattern. Recent studies indicated that RBP and rice bran protein hydrolysates (RBPH) served variety biological functions. In this review, we summarized the classical functions of RBP and RBPH mediating antioxidant activity, chronic diseases prevention (such as antihypertensive effect, anti-diabetic effect, cholesterol-lowering activity), and anti-cancer effect. We also proposed their potential novel functions on anti-obesity effect, attenuating sarcopenia, promoting wound healing. Furthermore, the potential benefit to coronavirus disease 2019 (COVID-19) patients was put forward, which might provide new strategy for development and utilization of RBP and RBPH.


Asunto(s)
Oryza , Proteínas de Plantas , Hidrolisados de Proteína , Humanos , Antioxidantes/farmacología , Oryza/química , Proteínas de Plantas/química , Hidrolisados de Proteína/química , Valor Nutritivo
17.
Int Microbiol ; 25(4): 831-838, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35857219

RESUMEN

Bjerkandera adusta can decompose polycyclic aromatic hydrocarbons including cellulose and lignin, but its roles in inhibiting plant pathogens are unclear. Here, the confrontation culture and greenhouse pot experiments were employed to study the control effect of B. adusta M1 on Fusarium graminearum and wheat scab. The results showed that B. adusta M1 fermentation broth (FB) inhibited the growth of F. graminearum, with an inhibition rate of 52.7-89.17%. FB had a significant control effect (72.14 ± 1.42%) on wheat scab, which was slightly lower than that of the chemical fungicide carbendazim (77.34 ± 1.76%). The growth rate was significantly higher in B. adusta M1 than in F. graminearum, indicating a strong competitiveness by B. adusta M1. The images from a scanning electron microscope showed substantial deformations of the hyphae of F. graminearum being penetrated by the hyphae of B. adusta M1, indicating a strong mycoparasitism by B. adusta M1. In addition, FB increased the activity of catalase, peroxidase, and phenylalanine ammonia-lyase in wheat leaves related to disease resistance and decreased the malondialdehyde production and cell membrane permeability. We conclude that B. adusta M1 is a promising fungal agent to control the detriment of F. graminearum to cereal growth in the field.


Asunto(s)
Coriolaceae , Fungicidas Industriales , Hidrocarburos Policíclicos Aromáticos , Catalasa , Fungicidas Industriales/farmacología , Lignina , Malondialdehído , Fenilanina Amoníaco-Liasa , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Triticum/microbiología
18.
Appl Microbiol Biotechnol ; 106(3): 1325-1339, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35037997

RESUMEN

Gut microbiota forms a unique microecosystem and performs various irreplaceable metabolic functions for ruminants. The gut microbiota is important for host health and provides new insight into endangered species conservation. Forest musk deer (FMD) and alpine musk deer (AMD) are typical small ruminants, globally endangered due to excessive hunting and habitat loss. Although nearly 60 years of captive musk deer breeding has reduced the hunting pressure in the wild, fatal gastrointestinal diseases restrict the growth of captive populations. In this study, 16S rRNA high-throughput sequencing revealed the differences in gut microbiota between FMD and AMD based on 166 fecal samples. The alpha diversity was higher in FMD than in AMD, probably helping FMD adapt to different and wider habitats. The ß-diversity was higher between adult FMD and AMD than juveniles and in winter than late spring. The phylum Firmicutes and the genera Christensenellaceae R7 group, Ruminococcus, Prevotellaceae UCG-004, and Monoglobus were significantly higher in abundance in FMD than in AMD. However, the phylum Bacteroidetes and genera Bacteroides, UCG-005, Rikenellaceae RC9 gut group, and Alistipes were significantly higher in AMD than FMD. The expression of metabolic functions was higher in AMD than in FMD, a beneficial pattern for AMD to maintain higher energy and substance metabolism. Captive AMD may be at higher risk of intestinal diseases than FMD, with higher relative abundances of most opportunistic pathogens and the expression of disease-related functions. These results provide valuable data for breeding healthy captive musk deer and assessing their adaptability in the wild. KEY POINTS: • Alpha diversity of gut microbiota was higher in FMD than that in AMD • Expression of metabolic and disease-related functions was higher in AMD than in FMD.


Asunto(s)
Ciervos , Microbioma Gastrointestinal , Animales , Ciervos/microbiología , Bosques , ARN Ribosómico 16S/genética
19.
J Integr Plant Biol ; 64(7): 1303-1309, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35546272

RESUMEN

Receptor-like kinases (RLKs) are a large group of plant-specific transmembrane proteins mainly acting as receptors or co-receptors of various extracellular signals. They usually turn extracellular signals into intracellular responses via altering gene expression profiles. However, recent studies confirmed that many RLKs can physically interact with diverse membrane-localized transport proteins and regulate their activities for speedy responses in limited tissues or cells. In this minireview, we highlight recent discoveries regarding how RLKs can work with membrane transport proteins collaboratively and thereby trigger cellular responses in a precise and rapid manner. It is anticipated that such regulation broadly presents in plants and more examples will be gradually revealed when in-depth analyses are conducted for the functions of RLKs.


Asunto(s)
Proteínas de Transporte de Membrana , Transducción de Señal , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Transducción de Señal/fisiología
20.
J Periodontal Res ; 56(5): 837-847, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34173676

RESUMEN

Curcumin is the main active ingredient of turmeric, which has a wide range of pharmacological effects, including antitumor, antibacterial, anti-inflammatory, anti-oxidation, immune regulation, and so on. Periodontitis is a prevalent oral inflammatory disease caused by a variety of factors. In recent years, many studies have shown that curcumin has a potential role on the treatment of periodontitis. Curcumin has been used in research related to the treatment of periodontitis in the form of solution, chip, gel, and capsule. Combined with other periodontitis treatment methods, such as scaling and root planing (SRP) and photodynamic therapy (PDT), can enhance curcumin's efficacy in treating periodontitis. In addition to natural curcumin, chemically modified curcumin, such as 4-phenylaminocarbonyl bis-demethoxy curcumin (CMC 2.24) and 4-methoxycarbonyl curcumin (CMC 2.5), have also been used in animal models of periodontitis. Here, this paper reviews the research progress of curcumin on the treatment of periodontitis and its related mechanisms.


Asunto(s)
Curcumina , Periodontitis , Animales , Antiinflamatorios/uso terapéutico , Curcumina/uso terapéutico , Raspado Dental , Periodontitis/tratamiento farmacológico , Aplanamiento de la Raíz
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA