Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.002
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 180(6): 1144-1159.e20, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32169217

RESUMEN

In eukaryotic cells, organelle biogenesis is pivotal for cellular function and cell survival. Chloroplasts are unique organelles with a complex internal membrane network. The mechanisms of the migration of imported nuclear-encoded chloroplast proteins across the crowded stroma to thylakoid membranes are less understood. Here, we identified two Arabidopsis ankyrin-repeat proteins, STT1 and STT2, that specifically mediate sorting of chloroplast twin arginine translocation (cpTat) pathway proteins to thylakoid membranes. STT1 and STT2 form a unique hetero-dimer through interaction of their C-terminal ankyrin domains. Binding of cpTat substrate by N-terminal intrinsically disordered regions of STT complex induces liquid-liquid phase separation. The multivalent nature of STT oligomer is critical for phase separation. STT-Hcf106 interactions reverse phase separation and facilitate cargo targeting and translocation across thylakoid membranes. Thus, the formation of phase-separated droplets emerges as a novel mechanism of intra-chloroplast cargo sorting. Our findings highlight a conserved mechanism of phase separation in regulating organelle biogenesis.


Asunto(s)
Arabidopsis/metabolismo , Transporte de Proteínas/fisiología , Sistema de Translocación de Arginina Gemela/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Biogénesis de Organelos , Orgánulos/metabolismo , Transición de Fase , Proteínas de Plantas/metabolismo , Tilacoides/metabolismo , Sistema de Translocación de Arginina Gemela/fisiología
2.
EMBO J ; 40(13): e106742, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33855718

RESUMEN

Fe-S clusters are ancient, ubiquitous and highly essential prosthetic groups for numerous fundamental processes of life. The biogenesis of Fe-S clusters is a multistep process including iron acquisition, sulfur mobilization, and cluster formation. Extensive studies have provided deep insights into the mechanism of the latter two assembly steps. However, the mechanism of iron utilization during chloroplast Fe-S cluster biogenesis is still unknown. Here we identified two Arabidopsis DnaJ proteins, DJA6 and DJA5, that can bind iron through their conserved cysteine residues and facilitate iron incorporation into Fe-S clusters by interactions with the SUF (sulfur utilization factor) apparatus through their J domain. Loss of these two proteins causes severe defects in the accumulation of chloroplast Fe-S proteins, a dysfunction of photosynthesis, and a significant intracellular iron overload. Evolutionary analyses revealed that DJA6 and DJA5 are highly conserved in photosynthetic organisms ranging from cyanobacteria to higher plants and share a strong evolutionary relationship with SUFE1, SUFC, and SUFD throughout the green lineage. Thus, our work uncovers a conserved mechanism of iron utilization for chloroplast Fe-S cluster biogenesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Azufre/metabolismo , Fotosíntesis/fisiología
3.
Mol Syst Biol ; 20(10): 1134-1150, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39134886

RESUMEN

Genome-scale metabolic models (GEMs) can facilitate metabolism-focused multi-omics integrative analysis. Since Yeast8, the yeast-GEM of Saccharomyces cerevisiae, published in 2019, has been continuously updated by the community. This has increased the quality and scope of the model, culminating now in Yeast9. To evaluate its predictive performance, we generated 163 condition-specific GEMs constrained by single-cell transcriptomics from osmotic pressure or reference conditions. Comparative flux analysis showed that yeast adapting to high osmotic pressure benefits from upregulating fluxes through central carbon metabolism. Furthermore, combining Yeast9 with proteomics revealed metabolic rewiring underlying its preference for nitrogen sources. Lastly, we created strain-specific GEMs (ssGEMs) constrained by transcriptomics for 1229 mutant strains. Well able to predict the strains' growth rates, fluxomics from those large-scale ssGEMs outperformed transcriptomics in predicting functional categories for all studied genes in machine learning models. Based on those findings we anticipate that Yeast9 will continue to empower systems biology studies of yeast metabolism.


Asunto(s)
Genoma Fúngico , Modelos Biológicos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Biología de Sistemas/métodos , Proteómica , Transcriptoma , Redes y Vías Metabólicas/genética , Presión Osmótica , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Carbono/metabolismo , Nitrógeno/metabolismo , Perfilación de la Expresión Génica
4.
FASEB J ; 38(15): e23868, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39102213

RESUMEN

Glycolysis is a major determinant of pulmonary artery smooth muscle cell (PASMC) proliferation in pulmonary hypertension (PH). Circular RNAs (circRNAs) are powerful regulators of glycolysis in multiple diseases; however, the role of circRNAs in glycolysis in PH has been poorly characterized. The aim of this study was to uncover the regulatory mechanism of a new circRNA, circNAP1L4, in human pulmonary artery smooth muscle cell (HPASMC) proliferation through the host protein NAP1L4 to regulate the super-enhancer-driven glycolysis gene hexokinase II (HK II). CircNAP1L4 was downregulated in hypoxic HPASMCs and plasma of PH patients. Functionally, circNAP1L4 overexpression inhibited glycolysis and proliferation in hypoxic HPASMCs. Mechanistically, circNAP1L4 directly bound to its host protein NAP1L4 and affected the ability of NAP1L4 to move into the nucleus to regulate the epigenomic signals of the super-enhancer of HK II. Intriguingly, circNAP1L4 overexpression inhibited the proliferation but not the migration of human pulmonary arterial endothelial cells (HPAECs) cocultured with HPASMCs. Furthermore, pre-mRNA-processing-splicing Factor 8 (PRP8) was found to regulate the production ratio of circNAP1L4 and linear NAP1L4. In vivo, targeting circNAP1L4 alleviates SU5416 combined with hypoxia (SuHx)-induced PH. Overall, these findings reveal a new circRNA that inhibits PASMC proliferation and serves as a therapeutic target for PH.


Asunto(s)
Proliferación Celular , Glucólisis , Hexoquinasa , Hipertensión Pulmonar , Miocitos del Músculo Liso , Arteria Pulmonar , ARN Circular , Humanos , Hexoquinasa/metabolismo , Hexoquinasa/genética , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/genética , Miocitos del Músculo Liso/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Animales , Ratones , Masculino , Células Cultivadas , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citología
5.
Nucleic Acids Res ; 51(19): 10782-10794, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37702119

RESUMEN

Phosphorothioate (PT)-modification was discovered in prokaryotes and is involved in many biological functions such as restriction-modification systems. PT-modification can be recognized by the sulfur binding domains (SBDs) of PT-dependent restriction endonucleases, through coordination with the sulfur atom, accompanied by interactions with the DNA backbone and bases. The unique characteristics of PT recognition endow SBDs with the potential to be developed into gene-targeting tools, but previously reported SBDs display sequence-specificity for PT-DNA, which limits their applications. In this work, we identified a novel sequence-promiscuous SBDHga from Hahella ganghwensis. We solved the crystal structure of SBDHga complexed with PT-DNA substrate to 1.8 Å resolution and revealed the recognition mechanism. A shorter L4 loop of SBDHga interacts with the DNA backbone, in contrast with previously reported SBDs, which interact with DNA bases. Furthermore, we explored the feasibility of using SBDHga and a PT-oligonucleotide as targeting tools for site-directed adenosine-to-inosine (A-to-I) RNA editing. A GFP non-sense mutant RNA was repaired at about 60% by harnessing a chimeric SBD-hADAR2DD (deaminase domain of human adenosine deaminase acting on RNA), comparable with currently available RNA editing techniques. This work provides insights into understanding the mechanism of sequence-specificity for SBDs and for developing new tools for gene therapy.


Asunto(s)
Edición de ARN , Humanos , Adenosina Desaminasa/metabolismo , ADN/química , Edición Génica , ARN/metabolismo , Azufre/química
6.
Nano Lett ; 24(12): 3826-3834, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38498923

RESUMEN

Lightweight, easily processed, and durable polymeric materials play a crucial role in wearable sensor devices. However, achieving simultaneously high strength and toughness remains a challenge. This study addresses this by utilizing an ion-specific effect to control crystalline domains, enabling the fabrication of a polymeric triboelectric material with tunable mechanical properties. The dense crystal-domain cross-linking enhances energy dissipation, resulting in a material boasting both high tensile strength (58.0 MPa) and toughness (198.8 MJ m-3), alongside a remarkable 416.7% fracture elongation and 545.0 MPa modulus. Leveraging these properties, the material is successfully integrated into wearable self-powered devices, enabling real-time feedback on human joint movement. This work presents a valuable strategy for overcoming the strength-toughness trade-off in polymeric materials, paving the way for their enhanced applicability and broader use in diverse sensing applications.

7.
J Biol Chem ; 299(9): 105130, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37543366

RESUMEN

Long noncoding RNAs (lncRNAs) are increasingly being recognized as modulators in various biological processes. However, due to their low expression, their systematic characterization is difficult to determine. Here, we performed transcript annotation by a newly developed computational pipeline, termed RNA-seq and small RNA-seq combined strategy (RSCS), in a wide variety of cellular contexts. Thousands of high-confidence potential novel transcripts were identified by the RSCS, and the reliability of the transcriptome was verified by analysis of transcript structure, base composition, and sequence complexity. Evidenced by the length comparison, the frequency of the core promoter and the polyadenylation signal motifs, and the locations of transcription start and end sites, the transcripts appear to be full length. Furthermore, taking advantage of our strategy, we identified a large number of endogenous retrovirus-associated lncRNAs, and a novel endogenous retrovirus-lncRNA that was functionally involved in control of Yap1 expression and essential for early embryogenesis was identified. In summary, the RSCS can generate a more complete and precise transcriptome, and our findings greatly expanded the transcriptome annotation for the mammalian community.


Asunto(s)
Anotación de Secuencia Molecular , ARN Largo no Codificante , RNA-Seq , Animales , Desarrollo Embrionario/genética , Mamíferos/embriología , Mamíferos/genética , Anotación de Secuencia Molecular/métodos , Regiones Promotoras Genéticas/genética , Reproducibilidad de los Resultados , Retroviridae/genética , ARN Largo no Codificante/genética , RNA-Seq/métodos , Sitio de Iniciación de la Transcripción , Transcriptoma/genética , Proteínas Señalizadoras YAP/genética , Proteínas Señalizadoras YAP/metabolismo
8.
BMC Genomics ; 25(1): 461, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734623

RESUMEN

BACKGROUND: Pseudomonas syringae pv. actinidiae (Psa) is an important bacterial plant pathogen that causes severe damage to the kiwifruit industry worldwide. Three Psa strains were recently obtained from different kiwifruit orchards in Anhui Province, China. The present study mainly focused on the variations in virulence and genome characteristics of these strains based on the pathogenicity assays and comparative genomic analyses. RESULTS: Three strains were identified as biovar 3 (Psa3), along with strain QSY6 showing higher virulence than JZY2 and YXH1 in pathogenicity assays. The whole genome assembly revealed that each of the three strains had a circular chromosome and a complete plasmid. The chromosome sizes ranged from 6.5 to 6.6 Mb with a GC content of approximately 58.39 to 58.46%, and a predicted number of protein-coding sequences ranging from 5,884 to 6,019. The three strains clustered tightly with 8 Psa3 reference strains in terms of average nucleotide identity (ANI), whole-genome-based phylogenetic analysis, and pangenome analysis, while they were evolutionarily distinct from other biovars (Psa1 and Psa5). Variations were observed in the repertoire of effectors of the type III secretion system among all 15 strains. Moreover, synteny analysis of the three sequenced strains revealed eight genomic regions containing 308 genes exclusively present in the highly virulent strain QSY6. Further investigation of these genes showed that 16 virulence-related genes highlight several key factors, such as effector delivery systems (type III secretion systems) and adherence (type IV pilus), which might be crucial for the virulence of QSY6. CONCLUSION: Three Psa strains were identified and showed variant virulence in kiwifruit plant. Complete genome sequences and comparative genomic analyses further provided a theoretical basis for the potential pathogenic factors responsible for kiwifruit bacterial canker.


Asunto(s)
Actinidia , Genoma Bacteriano , Genómica , Filogenia , Enfermedades de las Plantas , Pseudomonas syringae , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidad , China , Actinidia/microbiología , Virulencia/genética , Enfermedades de las Plantas/microbiología
9.
Nat Prod Rep ; 41(9): 1441-1455, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888887

RESUMEN

Covering: up to the end of 2023Type I CRISPR-Cas systems are widely distributed, found in over 40% of bacteria and 80% of archaea. Among genome-sequenced actinomycetes (particularly Streptomyces spp.), 45.54% possess type I CRISPR-Cas systems. In comparison to widely used CRISPR systems like Cas9 or Cas12a, these endogenous CRISPR-Cas systems have significant advantages, including better compatibility, wide distribution, and ease of operation (since no exogenous Cas gene delivery is needed). Furthermore, type I CRISPR-Cas systems can simultaneously edit and regulate genes by adjusting the crRNA spacer length. Meanwhile, most actinomycetes are recalcitrant to genetic manipulation, hindering the discovery and engineering of natural products (NPs). The endogenous type I CRISPR-Cas systems in actinomycetes may offer a promising alternative to overcome these barriers. This review summarizes the challenges and recent advances in CRISPR-based genome engineering technologies for actinomycetes. It also presents and discusses how to establish and develop genome editing tools based on type I CRISPR-Cas systems in actinomycetes, with the aim of their future application in gene editing and the discovery of NPs in actinomycetes.


Asunto(s)
Actinobacteria , Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Actinobacteria/genética , Genoma Bacteriano
10.
Small ; 20(29): e2400085, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38329164

RESUMEN

Modulating the solvation structure of hydrated zinc ions using organic additives stands as a pragmatic approach to suppress dendrite formation and corrosion on zinc metal anodes (ZMAs), thereby enhancing the rechargeability of aqueous Zn-ion batteries. However, fundamental screening principles for organic additives with diverse molecular structures remain elusive, especially for isomers with the same molecular formula. This study delves into the impact of three isomeric hexagonal alcohols (mannitol, sorbitol, and galactitol) as additives in adjusting Zn2+ solvation structural behaviors within ZnSO4 baseline electrolytes. Electrical measurements and molecular simulations reveal the specific molecular structure of mannitol, which features interweaving electron clouds between adjacent hydroxyl groups, achieving a high local electron cloud density. This phenomenon significantly enhances desolvation abilities, thus establishing a more stable anode/electrolyte interface chemistry. Even at 5 mA cm-2 for 2.5 mAh cm-2 capacity, Zn||Zn symmetric cells with mannitol-regulated electrolyte display an impressive 1170 h lifespan, far exceeding those with other isomer additives and is nearly tenfold longer than that with a pure ZnSO4 electrolyte (120 h). Rather than strictly adhering to focusing on chemical composition, this study with emphasis on optimizing molecular structure offers a promising untapped dimension to screen more efficient additives to enhance the reversibility of ZMAs.

11.
Yeast ; 41(6): 369-378, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38613186

RESUMEN

Engineering Yarrowia lipolytica to produce astaxanthin provides a promising route. Here, Y. lipolytica M2 producing a titer of 181 mg/L astaxanthin was isolated by iterative atmospheric and room-temperature plasma mutagenesis and diphenylamine-mediated screening. Interestingly, a negative correlation was observed between cell biomass and astaxanthin production. To reveal the underlying mechanism, RNA-seq analysis of transcriptional changes was performed in high producer M2 and reference strain M1, and a total of 1379 differentially expressed genes were obtained. Data analysis revealed that carbon flux was elevated through lipid metabolism, acetyl-CoA and mevalonate supply, but restrained through central carbon metabolism in strain M2. Moreover, upregulation of other pathways such as ATP-binding cassette transporter and thiamine pyrophosphate possibly provided more cofactors for carotenoid hydroxylase and relieved cell membrane stress caused by astaxanthin insertion. These results suggest that balancing cell growth and astaxanthin production may be important to promote efficient biosynthesis of astaxanthin in Y. lipolytica.


Asunto(s)
Perfilación de la Expresión Génica , Xantófilas , Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Xantófilas/metabolismo , Ingeniería Metabólica , Transcriptoma , Regulación Fúngica de la Expresión Génica , Redes y Vías Metabólicas/genética , Análisis de Flujos Metabólicos , Metabolismo de los Lípidos , Biomasa
12.
Metab Eng ; 81: 210-226, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38142854

RESUMEN

Streptomyces has an extensive array of bioactive secondary metabolites (SMs). Nevertheless, devising a framework for the heterologous production of these SMs remains challenging. We here reprogrammed a versatile plug-and-play Streptomyces super-chassis and established a universal pipeline for production of diverse SMs via understanding of the inherent pleiotropic effects of ethanol shock on jadomycin production in Streptomyces venezuelae. We initially identified and characterized a set of multiplex targets (afsQ1, bldD, bldA, and miaA) that contribute to SM (jadomycin) production when subjected to ethanol shock. Subsequently, we developed an ethanol-induced orthogonal amplification system (EOAS), enabling dynamic and precise control over targets. Ultimately, we integrated these multiplex targets into functional units governed by the EOAS, generating a universal and plug-and-play Streptomyces super-chassis. In addition to achieving the unprecedented titer and yield of jadomycin B, we also evidenced the potential of this super-chassis for production of diverse heterologous SMs, including antibiotic oxytetracycline, anticancer drug doxorubicins, agricultural herbicide thaxtomin A, and plant growth regulator guvermectin, all with the yields of >10 mg/g glucose in a simple mineral medium. Given that the production of SMs all required complexed medium and the cognate yields were usually much lower, our achievement of using a universal super-chassis and engineering pipeline in a simple mineral medium is promising for convenient heterologous production of SMs.


Asunto(s)
Adenosina/análogos & derivados , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Antibacterianos , Etanol/metabolismo , Minerales/metabolismo , Minerales/farmacología
13.
J Viral Hepat ; 31(8): 504-507, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38855857

RESUMEN

The understanding of viral transcription and replication activity in HBeAg-positive chronic hepatitis B (CHB) patients with low-level viraemia (LLV) or previous low-level viraemia (pre-LLV) remains unclear. Our aim was to evaluate and compare circulating hepatitis B virus (HBV) RNA levels in these patient groups with those achieving maintained virological response (MVR). This cross-sectional study included 147 patients: 43 in the LLV group, 25 in the pre-LLV group and 79 in the MVR group. Serum HBV RNA levels were assessed using specific RNA target capture combined with simultaneous amplification and testing method. Propensity score matching (PSM) was used to balance baseline characteristics between groups. Median HBV RNA levels were 6.9 copies/mL in the LLV group, 6.1 copies/mL in the pre-LLV group and 3.8 copies/mL in the MVR group. After PSM, significantly higher HBV RNA levels were observed in the LLV group compared to the MVR group (p < .001), and the pre-LLV group also showed higher HBV RNA levels than the MVR group (p < .001). Both LLV and pre-LLV HBeAg-positive CHB patients exhibited elevated circulating HBV RNA levels compared to those achieving MVR.


Asunto(s)
Antígenos e de la Hepatitis B , Virus de la Hepatitis B , Hepatitis B Crónica , ARN Viral , Carga Viral , Viremia , Humanos , Masculino , Femenino , Estudios Transversales , Adulto , ARN Viral/sangre , Antígenos e de la Hepatitis B/sangre , Virus de la Hepatitis B/genética , Hepatitis B Crónica/virología , Hepatitis B Crónica/sangre , Viremia/virología , Persona de Mediana Edad , Respuesta Virológica Sostenida , ADN Viral/sangre
14.
New Phytol ; 241(5): 2209-2226, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38084045

RESUMEN

R-loops, three-stranded nucleic acid structures consisting of a DNA: RNA hybrid and displaced single-stranded DNA, play critical roles in gene expression and genome stability. How R-loop homeostasis is integrated into chloroplast gene expression remains largely unknown. We found an unexpected function of FtsHi1, an inner envelope membrane-bound AAA-ATPase in chloroplast R-loop homeostasis of Arabidopsis thaliana. Previously, this protein was shown to function as a component of the import motor complex for nuclear-encoded chloroplast proteins. However, this study provides evidence that FtsHi1 is an ATP-dependent helicase that efficiently unwinds both DNA-DNA and DNA-RNA duplexes, thereby preventing R-loop accumulation. Over-accumulation of R-loops could impair chloroplast transcription but not necessarily genome integrity. The dual function of FtsHi1 in both protein import and chloroplast gene expression may be important to coordinate the biogenesis of nuclear- and chloroplast-encoded subunits of multi-protein photosynthetic complexes. This study suggests a mechanical link between protein import and R-loop homeostasis in chloroplasts of higher plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Adenosina Trifosfato/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Transporte de Proteínas , Estructuras R-Loop , ARN/metabolismo , ARN Helicasas/genética
15.
Plant Cell Environ ; 47(5): 1656-1667, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38282250

RESUMEN

Soybean (Glycine max) is a typical short-day plant, but has been widely cultivated in high-latitude long-day (LD) regions because of the development of early-maturing genotypes which are photoperiod-insensitive. However, some early-maturing varieties exhibit significant responses to maturity under different daylengths but not for flowering, depicting an evident photoperiodic after-effect, a poorly understood mechanism. In this study, we investigated the postflowering responses of 11 early-maturing soybean varieties to various preflowering photoperiodic treatments. We confirmed that preflowering SD conditions greatly promoted maturity and other postflowering developmental stages. Soybean homologs of FLOWERING LOCUS T (FT), including GmFT2a, GmFT3a, GmFT3b and GmFT5a, were highly accumulated in leaves under preflowering SD treatment. More importantly, they maintained a high expression level after flowering even under LD conditions. E1 RNAi and GmFT2a overexpression lines showed extremely early maturity regardless of preflowering SD and LD treatments due to constitutively high levels of floral-promoting GmFT homolog expression throughout their life cycle. Collectively, our data indicate that high and stable expression of floral-promoting GmFT homologs play key roles in the maintenance of photoperiodic induction to promote postflowering reproductive development, which confers early-maturing varieties with appropriate vegetative growth and shortened reproductive growth periods for adaptation to high latitudes.


Asunto(s)
Glycine max , Fotoperiodo , Glycine max/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/fisiología , Ritmo Circadiano , Regulación de la Expresión Génica de las Plantas
16.
Respir Res ; 25(1): 355, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354535

RESUMEN

INTRODUCTION: Pyroptosis, inflammatory necrosis of cells, is a programmed cell death involved in the pathological process of diseases. Endoplasmic reticulum stress (ERS), as a protective stress response of cell, decreases the unfold protein concentration to inhibit the unfold protein agglutination. Whereas the relationship between endoplasmic reticulum stress and pyroptosis in pulmonary hypertension (PH) remain unknown. Previous evident indicated that circular RNA (circRNA) can participate in several biological process, including cell pyroptosis. However, the mechanism of circRNA regulate pyroptosis of pulmonary artery smooth muscle cells through endoplasmic reticulum stress still unclear. Here, we proved that circSSR1 was down-regulate expression during hypoxia in pulmonary artery smooth muscle cells, and over-expression of circSSR1 inhibit pyroptosis both in vitro and in vivo under hypoxic. Our experiments have indicated that circSSR1 could promote host gene SSR1 translation via m6A to activate ERS leading to pulmonary artery smooth muscle cell pyroptosis. In addition, our results showed that G3BP1 as upstream regulator mediate the expression of circSSR1 under hypoxia. These results highlight a new regulatory mechanism for pyroptosis and provide a potential therapy target for pulmonary hypertension. METHODS: RNA-FISH and qRT-PCR were showed the location of circSSR1 and expression change. RNA pull-down and RIP verify the circSSR1 combine with YTHDF1. Western blotting, PI staining and LDH release were used to explore the role of circSSR1 in PASMCs pyroptosis. RESULTS: CircSSR1 was markedly downregulated in hypoxic PASMCs. Knockdown CircSSR1 inhibited hypoxia induced PASMCs pyroptosis in vivo and in vitro. Mechanistically, circSSR1 combine with YTHDF1 to promote SSR1 protein translation rely on m6A, activating pyroptosis via endoplasmic reticulum stress. Furthermore, G3BP1 induce circSSR1 degradation under hypoxic. CONCLUSION: Our findings clarify the role of circSSR1 up-regulated parental protein SSR1 expression mediate endoplasmic reticulum stress leading to pyroptosis in PASMCs, ultimately promoting the development of pulmonary hypertension.


Asunto(s)
Estrés del Retículo Endoplásmico , Miocitos del Músculo Liso , Arteria Pulmonar , Piroptosis , Estrés del Retículo Endoplásmico/fisiología , Piroptosis/fisiología , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Animales , Ratones , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , ARN Circular/metabolismo , ARN Circular/genética , Masculino , Células Cultivadas , Ratones Endogámicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/genética , Proteínas de la Membrana
17.
Protein Expr Purif ; 224: 106577, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39153562

RESUMEN

Developing more effective bioactive ingredients of natural origin is imperative for promoting wound healing. Sea cucumbers have long enjoyed a good reputation as both food delicacies and traditional medicines. In this study, we heterogeneously expressed a Apostichopus japonicus derived novel protein AjPSPLP-3, which exhibits a theoretical molecular weight of 13.034 kDa, through fusion with maltose binding protein (MBP). AjPSPLP-3 contains a strict CXXCXC motif, nine extremely conserved cysteine residues and two highly conserved cysteine residues. The predicted structure of AjPSPLP-3 consists of random coil and nine ß-sheets, Cys30-Cys67, Cys38-Cys58, Cys53-Cys90, Cys56-Cys66, and Cys81-Cys102 participating in the formation of five pairs of disulfide bonds. In vitro experiments conducted on HaCaT cells proved that AjPSPLP-3 and MBP-fused AjPSPLP-3 significantly contribute to HaCaT cells proliferation and migration without exhibiting hemolytic activity on murine erythrocytes. Specifically, treatment with 10 µmol/L MBP-fused AjPSPLP-3 protein increased the viability of HaCaT cells by 12.28 % (p < 0.001), while treatment with 10 µmol/L AjPSPLP-3 protein increased viability of HaCaT cells by 6.01 % (p < 0.01). Furthermore, wound closure of MBP-fused AjPSPLP-3 and AjPSPLP-3 were 22.51 % (p < 0.01) and 7.32 % (p < 0.05) higher than that of the control groups in HaCaT cells following 24 h of incubation.


Asunto(s)
Movimiento Celular , Proliferación Celular , Stichopus , Animales , Stichopus/genética , Stichopus/química , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Humanos , Ratones , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/aislamiento & purificación , Clonación Molecular , Secuencia de Aminoácidos , Línea Celular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Unión a Maltosa/genética , Proteínas de Unión a Maltosa/química , Proteínas de Unión a Maltosa/metabolismo , Células HaCaT
18.
Int Microbiol ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316254

RESUMEN

Antimicrobial peptides (AMPs) are a family of short defense proteins that are naturally produced by all organisms and have great potential as effective substitutes for small-molecule antibiotics. The present study aims to excavate AMPs from sea cucumbers and achieve their heterologous expression in prokaryotic Escherichia coli. Using MytC as a probe, a cysteine-stabilized peptide SCAK33 with broad-spectrum antimicrobial activity was discovered from the proteome of Apostichopus japonicas. The SCAK33 showed inhibitory effects on both gram positive and gram negative bacteria with MICs of 3-28 µM, and without significant hemolysis activity in rat blood erythrocyte. Especially, it exhibited good antimicrobial activity against Bacillus megaterium, B. subtilis, and Vibrio parahaemolyticus with the MIC of 3, 7, and 7 µM, respectively. After observation by scanning electronic microscopy (SEM) and confocal laser scanning microscope (CLSM), it was found that the cell membrane of bacteria was severely damaged. Furthermore, the recombinant SCAK33 (reSCAK33) was heterologously expressed by fusion with SUMO tag in E. coli BL21(DE3), and the protein yield reached 70 mg/L. The research will supplement the existing quantity of sea cucumber AMPs and provide data support for rapid mining and biological preparation of sea cucumber AMPs.

19.
Stat Med ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285137

RESUMEN

Response-adaptive randomization (RAR) procedures have been extensively studied in the literature, but most of the procedures rely on updating the randomization after each response, which is impractical in many clinical trials. In this article, we propose a new family of RAR procedures that dynamically update based on the responses of a group of individuals, either when available or at fixed time intervals (weekly or biweekly). We show that the proposed design retains the essential theoretical properties of Hu and Zhang's doubly adaptive biased coin designs (DBCD), and performs well in scenarios involving delayed and randomly missing responses. Numerical studies have been conducted to demonstrate that the new proposed group doubly adaptive biased coin design has similar properties to the Hu and Zhang's DBCDs in different situations. We also apply the new design to a real clinical trial, highlighting its advantages and practicality. Our findings open the door to studying the properties of other group response adaptive designs, such as urn models, and facilitate the application of response-adaptive randomized clinical trials in practice.

20.
Stat Med ; 43(9): 1743-1758, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38387866

RESUMEN

Clinical trialists often face the challenge of balancing scientific questions with other design features, such as improving efficiency, minimizing exposure to inferior treatments, and simultaneously comparing multiple treatments. While Bayesian response adaptive randomization (RAR) is a popular and effective method for achieving these objectives, it is known to have large variability and a lack of explicit theoretical results, making its use in clinical trials a subject of concern. It is desirable to propose a design that targets the same allocation proportion as Bayesian RAR and achieves the above objectives but addresses the concerns over Bayesian RAR. We propose the frequentist doubly adaptive biased coin designs (DBCD) targeting ethical allocation proportions from the Bayesian framework to satisfy different objectives in clinical trials with time-to-event endpoints. We derive the theoretical properties of the proposed adaptive randomization design and show through comprehensive numerical simulations that it can achieve ethical objectives without sacrificing efficiency. Our combined theoretical and numerical results offer a strong foundation for the practical use of RAR in real clinical trials.


Asunto(s)
Proyectos de Investigación , Humanos , Teorema de Bayes , Distribución Aleatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA