Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
Más filtros

País/Región como asunto
País de afiliación
Intervalo de año de publicación
1.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38112592

RESUMEN

Cancer-associated cognitive impairment is a significant challenge for individuals who have survived breast cancer, affecting their quality of life. In this study, we conducted an inaugural comprehensive Mendelian randomization analysis discerning the causal relationship between breast cancer, including its two subtypes, and the cerebral cortical structure. Our analysis indicated that estrogen receptor-negative breast cancer significantly decreased surface area (ß = -593.01 mm2, 95% CI: -1134.9 to -51.1 mm2, P = 0.032). At the regional level, estrogen receptor-negative breast cancer showed a significant association with surface area and thickness in 17 cortical regions. These regions included the insula, posterior cingulate, superior frontal, precuneus, fusiform, lateral occipital, and rostral middle frontal. Specifically, estrogen receptor-negative breast cancer had a significant impact on decreasing the surface area of the insula without considering global weight (ß = -14.09 mm2, 95% CI: -22.91 to -5.27 mm2, P = 0.0017). The results from meta-analysis and LD Score Regression provide support for our findings. This investigation unveils the correlations between breast cancer, its various subcategories, and the cerebral cortical structure. Notably, breast cancer of the estrogen receptor-negative variety may elicit more widespread cerebral atrophy.


Asunto(s)
Análisis de la Aleatorización Mendeliana , Neoplasias de la Mama Triple Negativas , Humanos , Calidad de Vida , Encéfalo , Receptores de Estrógenos
2.
Artículo en Inglés | MEDLINE | ID: mdl-39140974

RESUMEN

Studies have shown that decreased expression of glucose-6-phosphate dehydrogenase (G6PD) play an important role in DKD. However, the upstream and downstream pathways of G6PD downregulation leading to DKD have not been elucidated.We conducted a series of studies including clinical study, animal studies, and in vitro studies to explore this. Firstly, a total of 90 subjects were evaluated. The urinary G6PD activity and its association with the clinical markers were analyzed. Then, urine differentially microRNAs that can bind and degrade G6PD were screened and verified in DKD patients. After that, high glucose (HG)-cultured Human kidney cells (HK-2) and Zucker diabetic fatty (ZDF) rats were used to test the roles of miR-7977/G6PD/albumin-induced autophagy in DKD. The plasma and urinary G6PD activity were decreased significantly in patients with DKD, accompanied by increased urinary mir-7977 level. The fasting plasma glucose (FPG), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and urinary albumin excretion were independent predictors of urinary G6PD activity by multiple linear regression analysis.The increased expression of miR-7977 and decreased expression of G6PD were also found in the kidney of ZDF rats with early renal tubular damage.In HK-2 cells cultured with normal situation, low level of albumin could induce autophagy along with the stimulation of G6PD although this was impaired under high glucose. Overexpression of G6PD reversed albumin-induced autophagy in HK2 cells under high glucose.Inhibition mir-7977 expression led to significantly increased expression of G6PD and reversed the effects of high glucose on albumin induced autophagy.Our study supports a new mechanism of G6PD downregulation in DKD.

3.
BMC Pulm Med ; 24(1): 153, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532368

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is underdiagnosed with the current gold standard measure pulmonary function test (PFT). A more sensitive and simple option for early detection and severity evaluation of COPD could benefit practitioners and patients. METHODS: In this multicenter retrospective study, frontal chest X-ray (CXR) images and related clinical information of 1055 participants were collected and processed. Different deep learning algorithms and transfer learning models were trained to classify COPD based on clinical data and CXR images from 666 subjects, and validated in internal test set based on 284 participants. External test including 105 participants was also performed to verify the generalization ability of the learning algorithms in diagnosing COPD. Meanwhile, the model was further used to evaluate disease severity of COPD by predicting different grads. RESULTS: The Ensemble model showed an AUC of 0.969 in distinguishing COPD by simultaneously extracting fusion features of clinical parameters and CXR images in internal test, better than models that used clinical parameters (AUC = 0.963) or images (AUC = 0.946) only. For the external test set, the AUC slightly declined to 0.934 in predicting COPD based on clinical parameters and CXR images. When applying the Ensemble model to determine disease severity of COPD, the AUC reached 0.894 for three-classification and 0.852 for five-classification respectively. CONCLUSION: The present study used DL algorithms to screen COPD and predict disease severity based on CXR imaging and clinical parameters. The models showed good performance and the approach might be an effective case-finding tool with low radiation dose for COPD diagnosis and staging.


Asunto(s)
Aprendizaje Profundo , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Estudios Retrospectivos , Rayos X , Tórax
4.
J Transl Med ; 21(1): 120, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36782197

RESUMEN

BACKGROUND: Metastasis is the predominant cause of mortality in patients with breast cancer. Long noncoding RNAs (lncRNAs) have been shown to drive important phenotypes in tumors, including invasion and metastasis. However, the lncRNAs involved in metastasis and their molecular and cellular mechanisms are still largely unknown. METHODS: The transcriptional and posttranscriptional processing of LINC00478-associated cytoplasmic RNA (LacRNA) was determined by RT-qPCR, semiquantitative PCR and 5'/3' RACE. Paired-guide CRISPR/cas9 and CRISPR/dead-Cas9 systems was used to knock out or activate the expression of LacRNA. Cell migration and invasion assay was performed to confirm the phenotype of LacRNA. Tail vein model and mammary fat pad model were used for in vivo study. The LacRNA-PHB2-cMyc axis were screened and validated by RNA pulldown, mass spectrometry, RNA immunoprecipitation and RNA-seq assays. RESULTS: Here, we identified a novel cytoplasmic lncRNA, LacRNA (LINC00478-associated cytoplasmic RNA), derived from nucleus-located lncRNA LINC00478. The nascent transcript of LINC00478 full-length (LINC00478_FL) was cleaved and polyadenylated, simultaneously yielding 5' ends stable expressing LacRNA, which is released into the cytoplasm, and long 3' ends of nuclear-retained lncRNA. LINC00478_3'RNA was rapidly degraded. LacRNA significantly inhibited breast cancer invasion and metastasis in vitro and in vivo. Mechanistically, LacRNA physically interacted with the PHB domain of PHB2 through its 61-140-nt region. This specific binding affected the formation of the autophagy degradation complex of PHB2 and LC3, delaying the degradation of the PHB2 protein. Unexpectedly, LacRNA specifically interacted with PHB2, recruited c-Myc and promoted c-Myc ubiquitination and degradation. The negatively regulation of Myc signaling ultimately inhibited breast cancer metastasis. Furthermore, LacRNA and LacRNA-mediated c-Myc signaling downregulation are significantly associated with good clinical outcomes, take advantage of these factors we constructed a prognostic predict model. CONCLUSION: Therefore, our findings propose LacRNA as a potential prognostic biomarker and a new therapeutic strategy.


Asunto(s)
ARN Largo no Codificante , Neoplasias Cutáneas , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transducción de Señal , Proteínas Proto-Oncogénicas c-myc/metabolismo , Pronóstico , Neoplasias Cutáneas/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proliferación Celular , Melanoma Cutáneo Maligno
5.
Theor Appl Genet ; 136(4): 77, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36952041

RESUMEN

KEY MESSAGE: Seventy-three QTL related to grain color and tannin content were identified in Chinese sorghum accessions, and a new recessive allelic variant of TAN2 gene was discovered. Sorghum is mainly used for brewing distilled liquors in China. Since grain tannins play an important role in liquor brewing, accurately understanding the relationship between grain color and tannin content can provide basis for selection standards of tannin sorghum. We resequenced a panel of 242 Chinese sorghum accessions and performed population structure and genome-wide association study (GWAS) to identify quantitative trait locus (QTL) affecting pericarp color, testa pigment, and tannin content. Phylogenetic analysis, principal component analysis (PCA), and admixture model were used to infer population structure. Two distinct genetic sub-populations were identified according to their corresponding northern and southern geographic origin. To investigate the genetic basis of natural variation in sorghum grain color, GWAS with 2,760,264 SNPs was conducted in four environments using multiple models (Blink, FarmCPU, GLM, and MLM). Seventy-three QTL were identified to be associated for the color of exocarp, mesocarp, testa, and tannin content on all chromosomes except chromosome 5, of which 47 might be novel QTL. Some important QTL were found to colocalize with orthologous genes in the flavonoid biosynthetic pathway from other plants, including orthologous of Arabidopsis (Arabidopsis thaliana) TT2, TT7, TT12, TT16 and AT5G41220 (GST), as well as orthologous of rice (Oryza sativa) MYB61 and OsbHLH025. Our investigation of the variation in grain color and tannin content in Chinese sorghum germplasm may help guide future sorghum breeding for liquor brewing.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sorghum , Grano Comestible/genética , Filogenia , Fitomejoramiento , Sorghum/genética , Taninos/análisis
6.
Anim Biotechnol ; 34(8): 3589-3598, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36866843

RESUMEN

TEA domain transcription factor 1 (TEAD1), also called TEF-1, acts as a transcriptional enhancer to regulate muscle-specific gene expression. However, the role of TEAD1 in regulating intramuscular preadipocyte differentiation in goats is unclear. The aim of this study was to obtain the sequence of TEAD1 gene and elucidate the effect of TEAD1 on goat intramuscular preadipocyte differentiation in vitro and its possible mechanism. The results showed that the goat TEAD1 gene CDS region sequence was 1311 bp. TEAD1 gene was widely expressed in goat tissues, with the highest expression in brachial triceps (p < 0.01). The expression of TEAD1 gene in goat intramuscular adipocytes at 72 h was extremely significantly higher than that at 0 h (p < 0.01). Overexpression of goat TEAD1 inhibited the accumulation of lipid droplets in goat intramuscular adipocyte. The relative expression of differentiation marker genes SREBP1, PPARγ, C/EBPß were significantly down-regulated (all p < 0.01), but PREF-1 was significantly up-regulated (p < 0.01). Binding analysis showed that there were multiple binding sites between the DNA binding domain of goat TEAD1 and the promoter binding region of SREBP1, PPARγ, C/EBPß and PREF-1. In conclusion, TEAD1 negatively regulates the differentiation of goat intramuscular preadipocytes.


Asunto(s)
Cabras , Factores de Transcripción de Dominio TEA , Animales , Cabras/fisiología , PPAR gamma/metabolismo , Adipocitos/fisiología , Músculo Esquelético/metabolismo , Diferenciación Celular/genética , Adipogénesis/genética
7.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38203393

RESUMEN

Although targeted therapy for human epidermal growth factor receptor 2 (HER2)-positive breast cancer has significantly prolonged survival time and improved patients' quality of life, drug resistance has gradually emerged. This study explored the mechanisms underlying the effect of the motor neuron and pancreatic homeobox 1 (MNX1) genes on drug sensitivity in HER2-positive breast cancer. From July 2017 to 2018, core needle biopsies of HER2-positive breast cancer were collected from patients who received paclitaxel, carboplatin, and trastuzumab neoadjuvant therapy at our center. Based on treatment efficacy, 81 patients were divided into pathological complete response (pCR) and non-pCR groups. High-throughput RNA sequencing results were analyzed along with the GSE181574 dataset. MNX1 was significantly upregulated in the pCR group compared with the non-pCR group in both sequencing datasets, suggesting that MNX1 might be correlated with drug sensitivity in HER2-positive breast cancer. Meanwhile, tissue array results revealed that high MNX1 expression corresponded to a good prognosis. In vitro functional tests showed that upregulation of MNX1 significantly increased the sensitivity of HER2-positive breast cancer cells to lapatinib and pyrotinib. In conclusion, MNX1 may serve as a prognostic marker for patients with HER2-positive breast cancer, and its expression may facilitate clinical screening of patients sensitive to anti-HER2-targeted therapy.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Calidad de Vida , Regulación de la Expresión Génica , Genes Homeobox , Carboplatino/farmacología , Carboplatino/uso terapéutico , Factores de Transcripción , Proteínas de Homeodominio
8.
BMC Genomics ; 23(1): 499, 2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35810309

RESUMEN

BACKGROUND: The trihelix family of transcription factors plays essential roles in the growth, development, and abiotic stress response of plants. Although several studies have been performed on the trihelix gene family in several dicots and monocots, this gene family is yet to be studied in Chenopodium quinoa (quinoa). RESULTS: In this study, 47 C. quinoa trihelix (CqTH) genes were in the quinoa genome. Phylogenetic analysis of the CqTH and trihelix genes from Arabidopsis thaliana and Beta vulgaris revealed that the genes were clustered into five subfamilies: SIP1, GTγ, GT1, GT2, and SH4. Additionally, synteny analysis revealed that the CqTH genes were located on 17 chromosomes, with the exception of chromosomes 8 and 11, and 23 pairs of segmental duplication genes were detected. Furthermore, expression patterns of 10 CqTH genes in different plant tissues and at different developmental stages under abiotic stress and phytohormone treatment were examined. Among the 10 genes, CqTH02, CqTH25, CqTH18, CqTH19, CqTH25, CqTH31, and CqTH36, were highly expressed in unripe achenes 21 d after flowering and in mature achenes compared with other plant tissues. Notably, the 10 CqTH genes were upregulated in UV-treated leaves, whereas CqTH36 was consistently upregulated in the leaves under all abiotic stress conditions. CONCLUSIONS: The findings of this study suggest that gene duplication could be a major driver of trihelix gene evolution in quinoa. These findings could serve as a basis for future studies on the roles of CqTH transcription factors and present potential genetic markers for breeding stress-resistant and high-yielding quinoa varieties.


Asunto(s)
Arabidopsis , Chenopodium quinoa , Arabidopsis/genética , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Plant Biotechnol J ; 20(7): 1285-1297, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35258172

RESUMEN

Allele-specific expression (ASE) can lead to phenotypic diversity and evolution. However, the mechanisms regulating ASE are not well understood, particularly in woody perennial plants. In this study, we investigated ASE genes in the apple cultivar 'Royal Gala' (RG). A high quality chromosome-level genome was assembled using a homozygous tetra-haploid RG plant, derived from anther cultures. Using RNA-sequencing (RNA-seq) data from RG flower and fruit tissues, we identified 2091 ASE genes. Compared with the haploid genome of 'Golden Delicious' (GD), a parent of RG, we distinguished the genomic sequences between the two alleles of 817 ASE genes, and further identified allele-specific presence of a transposable element (TE) in the upstream region of 354 ASE genes. These included MYB110a that encodes a transcription factor regulating anthocyanin biosynthesis. Interestingly, another ASE gene, MYB10 also showed an allele-specific TE insertion and was identified using genome data of other apple cultivars. The presence of the TE insertion in both MYB genes was positively associated with ASE and anthocyanin accumulation in apple petals through analysis of 231 apple accessions, and thus underpins apple flower colour evolution. Our study demonstrated the importance of TEs in regulating ASE on a genome-wide scale and presents a novel method for rapid identification of ASE genes and their regulatory elements in plants.


Asunto(s)
Malus , Alelos , Antocianinas , Color , Elementos Transponibles de ADN , Flores/genética , Flores/metabolismo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Genoma de Planta , Malus/metabolismo , Proteínas de Plantas/genética
10.
Environ Sci Technol ; 56(23): 17018-17028, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36375127

RESUMEN

The toxicity of organophosphate esters (OPEs) on embryonic development is well noted in animal experiments, but epidemiological studies are still lacking. This study evaluated the prenatal exposure of OPEs and its trimester-specific and gender-specific effects on fetal growth. The correlations between OPE exposure and fetal growth were investigated by linear mixed-effect models and multivariable linear regression analyses. Prenatal exposure to tributyl phosphate (TBP) was negatively associated with a z-score of fetal abdominal circumference (AC), biparietal diameter (BPD), femur length (FL), and head circumference (HC). In the second trimester, the serum concentration of TBP was inversely related to the z-score of AC, BPD, and HC. In the third trimester, serum concentration of TBP was inversely related to AC, BPD, and FL z-scores. Prenatal exposure to tri-m-cresyl phosphate (TMCP) was inversely related to the z-score of AC, BPD, and HC. In the second trimester, TMCP was negatively correlated with AC, BPD, FL, and HC z-scores. After stratification by gender, male fetuses were more sensitive to OPE exposure. The above results remained robust after excluding pregnant women who gave preterm birth or those with low or high pre-pregnancy BMI. Our findings suggested that health effects of typical OPEs, particularly TBP and TMCP, should be taken into consideration in future works.


Asunto(s)
Nacimiento Prematuro , Efectos Tardíos de la Exposición Prenatal , Recién Nacido , Embarazo , Masculino , Femenino , Humanos , Ultrasonografía Prenatal , Desarrollo Fetal , Organofosfatos/toxicidad , Ésteres
11.
Aging Clin Exp Res ; 34(2): 399-407, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34313962

RESUMEN

BACKGROUND: The decline of muscle strength, a typical characteristic of sarcopenia, greatly affects aging-related health outcomes; however, prospective data on influencing factors and mortality in the Chinese population are relatively sparse. AIMS: We investigated the influencing factors for the declined limb muscle strength and the association with all-cause mortality among the elderly Chinese individuals aged ≥ 65 years in a large long-term prospective cohort study. METHODS: We used data from the China Health and Retirement Longitudinal Study (CHARLS). Logistic regression analyses were performed to investigate the influencing factors of declined limb muscle strength. Cox proportional hazard models were used to analyze the impact on all-cause mortality, whose performance was evaluated by train-test cross-validation. RESULTS: The prevalences of declined upper and lower limb strength, which were defined by low hand grip strength (HS) and gait speed (GS), respectively, were 34.4% and 59.7%. The declined HS was significantly associated with older age (p < 0.001), female (p < 0.001), lower educational level (p < 0.001), lower BMI (p < 0.001), and combined with chronic diseases (p = 0.001). Moreover, the declined limb muscle strength was correlated with all-cause mortality (HR: 1.13, 95% CI 1.03-1.21 for HS; HR: 1.09, 95% CI 1.04-1.15 for GS), according to a multi-adjusted model with moderate predictive ability (C-index: 0.714, AUC of 7 year follow-up: 0.716). CONCLUSIONS: The decline of limb muscle strength was prevalent among elderly Chinese individuals and had a strong impact on all-cause mortality. Identification of key populations and tailored interventions on their influencing factors should be implemented in further research.


Asunto(s)
Fuerza de la Mano , Sarcopenia , Anciano , Estudios de Cohortes , Femenino , Humanos , Estudios Longitudinales , Fuerza Muscular , Estudios Prospectivos , Sarcopenia/epidemiología
12.
Genomics ; 113(1 Pt 2): 493-502, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32966860

RESUMEN

Fruit development and ripening are essential components of human and animal diets. Fruit ripening is also a vital plant trait for plant shelf life at the commercial level. In the present study, two apple cultivars, Hanfu wild (HC) and Hanfu mutant (HM), were employed for RNA-Sequencing (RNA-Seq) to explore the genes involved in fruit ripening. We retrieved 2642 genes, differentially expressed in HC and HM apple cultivars. Gene ontology (GO) analysis revealed the 569 categories, significantly enriched in biological process, cellular component, and molecular function. KEGG analysis exhibited the plant hormone transduction and flavonoid-anthocyanin biosynthesis pathways, might be involved in the fruit ripening and anthocyanin biosynthesis mechanism. A cluster of 13 and 26 DEGs was retrieved, representing the plant hormones and transcription factors, respectively, that may be important for early ripening in HM genotype. This transcriptome study would be useful for researchers to functionally characterize the DEGs responsible for early ripening.


Asunto(s)
Antocianinas/biosíntesis , Frutas/genética , Malus/genética , Transcriptoma , Antocianinas/genética , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Malus/crecimiento & desarrollo , Pigmentación
13.
BMC Genomics ; 22(1): 738, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34649496

RESUMEN

BACKGROUND: Transcription factors, including trihelix transcription factors, play vital roles in various growth and developmental processes and in abiotic stress responses in plants. The trihelix gene has been systematically studied in some dicots and monocots, including Arabidopsis, tomato, chrysanthemum, soybean, wheat, corn, rice, and buckwheat. However, there are no related studies on sorghum. RESULTS: In this study, a total of 40 sorghum trihelix (SbTH) genes were identified based on the sorghum genome, among which 34 were located in the nucleus, 5 in the chloroplast, 1 (SbTH38) in the cytoplasm, and 1 (SbTH23) in the extracellular membrane. Phylogenetic analysis of the SbTH genes and Arabidopsis and rice trihelix genes indicated that the genes were clustered into seven subfamilies: SIP1, GTγ, GT1, GT2, SH4, GTSb8, and orphan genes. The SbTH genes were located in nine chromosomes and none on chromosome 10. One pair of tandem duplication gene and seven pairs of segmental duplication genes were identified in the SbTH gene family. By qPCR, the expression of 14 SbTH members in different plant tissues and in plants exposed to six abiotic stresses at the seedling stage were quantified. Except for the leaves in which the genes were upregulated after only 2 h exposure to high temperature, the 12 SbTH genes were significantly upregulated in the stems of sorghum seedlings after 24 h under the other abiotic stress conditions. Among the selected genes, SbTH10/37/39 were significantly upregulated, whereas SbTH32 was significantly downregulated under different stress conditions. CONCLUSIONS: In this study, we identified 40 trihelix genes in sorghum and found that gene duplication was the main force driving trihelix gene evolution in sorghum. The findings of our study serve as a basis for further investigation of the functions of SbTH genes and providing candidate genes for stress-resistant sorghum breeding programmes and increasing sorghum yield.


Asunto(s)
Sorghum , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sorghum/genética , Sorghum/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Am J Transplant ; 20(8): 2226-2233, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32092213

RESUMEN

An ideal animal model is a prerequisite for the basic research of uterus transplantation. This study aimed to develop a new cervical ectopic uterus transplantation mice model, which was established by vascular anastomosis of the right common iliac artery and vein of the donor with the right common carotid artery and external jugular vein of the recipient, respectively, using the cuff method. The survival status of the transplanted uterus was assessed by macroscopic observation and histological examination after surgery, and the function of the graft uterus was tested by verifying whether the pregnancy is possible. A total of 40 transplants were performed, of which only 1 failed due to donor hemorrhage. After 26 transplants, the total operation time reduced to 52.4 ± 3.8 minutes, of which the total ischemia time took 6.6 ± 1.1 minutes. Sixty days after transplantation, all the graft uteri had a good blood supply and spontaneous contraction. The histology showed no significant difference between the transplanted uterus and the native. Embryo transfer experiments have proven that the transplanted uterus has uterine function. In conclusion, this new model is an effective and simple mice model for the studies of the scientific issues related to uterus transplantation.


Asunto(s)
Nacimiento Vivo , Trasplantes , Animales , Femenino , Humanos , Arteria Ilíaca , Ratones , Embarazo , Donantes de Tejidos , Útero/trasplante
15.
BMC Immunol ; 21(1): 19, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32299357

RESUMEN

BACKGROUND: Miscellaneous memory cell populations that exist before organ transplantation are crucial barriers to transplantation. In the present study, we used a skin-primed heart transplantation model in mouse to evaluate the abilities of Thalidomide (TD), alone or in combination with co-stimulatory blockade, using monoclonal antibodies (mAbs) against memory T cells and alloantibodies to prolong the second cardiac survival. RESULTS: In the skin-primed heart transplantation model, TD combined with mAbs significantly prolonged the second cardiac survival, accompanied by inhibition of memory CD8+ T cells. This combined treatment enhanced the CD4+Foxp3+ regulatory T cells ratio in the spleen, restrained the infiltration of lymphocytes into the allograft, and suppressed the allo-response of spleen T cells in the recipient. The levels of allo-antibodies also decreased in the recipient serum. In addition, we detected low levels of the constitutions of the lytic machinery of cytotoxic cells, which cause allograft damage. CONCLUSIONS: Our study indicated a potential synergistic action of TD in combination with with mAbs to suppress the function of memory T cells and increase the survival of second allografts in alloantigen-primed mice.


Asunto(s)
Rechazo de Injerto/tratamiento farmacológico , Supervivencia de Injerto/efectos de los fármacos , Corazón/efectos de los fármacos , Isoantígenos/farmacología , Talidomida/farmacología , Aloinjertos/efectos de los fármacos , Animales , Anticuerpos Monoclonales/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Femenino , Factores de Transcripción Forkhead/metabolismo , Rechazo de Injerto/metabolismo , Trasplante de Corazón/métodos , Memoria Inmunológica/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Bazo/efectos de los fármacos , Linfocitos T Reguladores/efectos de los fármacos , Trasplante Homólogo/métodos
16.
Immunol Cell Biol ; 98(5): 382-396, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32162358

RESUMEN

Current immunosuppressive agents for organ transplantation are not ideal because of their strong toxicity and adverse effects. Hence, there is an urgent need to develop novel immunosuppressive agents. The compound N, N'-dicyclohexyl-N-arachidonic acylurea (DCAAA) is a novel highly unsaturated fatty acid from the traditional Chinese medicinal plant Radix Isatidis. In this study, we systematically investigated the toxicity, immunosuppressive effect and mechanisms underlying the activity of DCAAA. The toxicity tests showed that DCAAA treatment did not lead to red blood cell hemolysis and did not affect the liver and kidney functions in mice. The lymphocyte transformation test showed that DCAAA treatment inhibited lymphocyte proliferation in a dose-dependent manner. An in vivo cardiac allotransplantation experiment showed that DCAAA treatment could suppress the immune rejection and significantly prolong the survival of cardiac allografts in recipient mice by reducing the proportion of CD4+ T cells in the spleen and grafts, concentration of interferon-γ in the supernatant and serum and infiltration of inflammatory cells into the grafts. Moreover, a combination treatment with DCAAA and tacrolimus had a synergistic effect in preventing acute rejection of heart transplants. In vitro molecular biology experiments showed that DCAAA treatment inhibited activation of the T-cell receptor-mediated phosphoinostide 3-kinase-protein kinase B pathway, thereby arresting cell cycle transition from the G1 to the S phase, and inhibiting lymphocyte proliferation. Overall, our study reveals a novel, low-toxicity immunosuppressive agent that has the potential to reduce the toxic side effects of existing immunosuppressive agents when used in combination with them.


Asunto(s)
Ácidos Grasos/farmacología , Supervivencia de Injerto , Trasplante de Corazón , Inmunosupresores/farmacología , Tacrolimus , Aloinjertos , Animales , Rechazo de Injerto , Isatis/química , Ratones , Fitoquímicos/farmacología , Tacrolimus/farmacología
17.
J Exp Bot ; 71(18): 5389-5401, 2020 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-32497208

RESUMEN

Grain size is a major determinant of grain yield in sorghum and other cereals. Over 100 quantitative trait loci (QTLs) of grain size have been identified in sorghum. However, no gene underlying any grain size QTL has been cloned. Here, we describe the fine mapping and cloning of one grain size QTL. From an F8 recombinant inbred line population derived from a cross between inbred lines 654 and LTR108, we identified 44 grain size QTLs. One QTL, qTGW1a, was detected consistently on the long arm of chromosome 1 in the span of 4 years. Using the extreme recombinants from an F2:3 fine-mapping population, qTGW1a was delimited within a ~33 kb region containing three predicted genes. One of them, SORBI_3001G341700, predicted to encode a G-protein γ subunit and homologous to GS3 in rice, is likely to be the causative gene for qTGW1a. qTGW1a appears to act as a negative regulator of grain size in sorghum. The functional allele of the putatively causative gene of qTGW1a from inbred line 654 decreased grain size, plant height, and grain yield in transgenic rice. Identification of the gene underlying qTGW1a advances our understanding of the regulatory mechanisms of grain size in sorghum and provides a target to manipulate grain size through genome editing.


Asunto(s)
Oryza , Sorghum , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Grano Comestible/genética , Oryza/genética , Fenotipo , Subunidades de Proteína , Sorghum/genética
18.
Inorg Chem ; 59(23): 17415-17420, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33211488

RESUMEN

The reaction of 3,6-ditert-butyl-1,8-bis(diphenylphosphino)-9-methyl-9H-carbazole (L) with CuBr resulted in the isolation of tetranuclear copper(I) complex Cu4Br4L2 as two colorless crystal morphs, i.e., green-emitting 1G and yellow-emitting 1Y. As demonstrated by X-ray crystallography, the Cu4Br4 moiety in both 1G and 1Y adopts the same chair conformations. When L is bonded perpendicularly to the Cu4 plane, 1G with green emission is obtained, while it gives a yellow emission of 1Y once the L is parallelly bonded to Cu4 plane. Theoretical computational studies suggest that the variation in ligand orientation results in a different degree of structural distortion in triplet state and thus different luminescent energy. Particularly, 1Y undergoes dramatic structural distortion from the ground (S0) to triplet excied state (T1). Interestingly, 1G can be converted into 1Y upon exposed to saturated hexane vapor, which would return to 1G upon exposure to acetonitrile vapor. As demonstrated experimentally and theoretically, the reversible luminescence transformation between 1G and 1Y is ascribed to the variation of ligand L orientations.

19.
Hereditas ; 157(1): 19, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32410666

RESUMEN

BACKGROUND: Hongyingzi is a sorghum (Sorghum bicolor L. Moench) cultivar for brewing Moutai liquor. For an overall understanding of the whole genome of Hongyingzi, we performed whole-genome resequencing technology to reveal its comprehensive variations. RESULTS: Compared with the BTx623 reference genome, we uncovered 1,885,774 single nucleotide polymorphisms (SNPs), 309,381 small fragments insertions and deletions (Indels), 31,966 structural variations (SVs), and 217,273 copy number variations (CNVs). These alterations conferred 29,614 gene variations. It was also predicted that 35 gene variations were related to the multidrug and toxic efflux (MATE) transporter, chalcone synthase (CHS), ATPase isoform 10 (AHA10) transporter, dihydroflavonol-4-reductase (DFR), the laccase 15 (LAC15), flavonol 3'-hydroxylase (F3'H), flavanone 3-hydroxylase (F3H), O-methyltransferase (OMT), flavonoid 3'5' hydroxylase (F3'5'H), UDP-glucose:sterol-glucosyltransferase (SGT), flavonol synthase (FLS), and chalcone isomerase (CHI) involved in the tannin synthesis. CONCLUSIONS: These results would provide theoretical supports for the molecular markers developments and gene function studies related to the tannin synthesis, and the genetic improvement of liquor-making sorghum based on the genome editing technology.


Asunto(s)
Genoma de Planta , Sorghum/genética , Taninos/biosíntesis , Bebidas Alcohólicas , China , Variaciones en el Número de Copia de ADN , Mutación INDEL , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma
20.
Proc Natl Acad Sci U S A ; 114(23): E4631-E4640, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28533408

RESUMEN

Like many complex human diseases, esophageal squamous cell carcinoma (ESCC) is known to cluster in families. Familial ESCC cases often show early onset and worse prognosis than the sporadic cases. However, the molecular genetic basis underlying the development of familial ESCC is mostly unknown. We reported that SLC22A3 is significantly down-regulated in nontumor esophageal tissues from patients with familial ESCC compared with tissues from patients with sporadic ESCCs. A-to-I RNA editing of the SLC22A3 gene results in its reduced expression in the nontumor esophageal tissues of familial ESCCs and is significantly correlated with lymph node metastasis. The RNA-editing enzyme ADAR2, a familial ESCC susceptibility gene identified by our post hoc genome-wide association study, is positively correlated with the editing level of SLC22A3 Moreover, functional studies showed that SLC22A3 is a metastasis suppressor in ESCC, and deregulation of SLC22A3 facilitates cell invasion and filopodia formation by reducing its direct association with α-actinin-4 (ACTN4), leading to the increased actin-binding activity of ACTN4 in normal esophageal cells. Collectively, we now show that A-to-I RNA editing of SLC22A3 contributes to the early development and progression of familial esophageal cancer in high-risk individuals.


Asunto(s)
Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Proteínas de Transporte de Catión Orgánico/genética , Edición de ARN , Actinina/metabolismo , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Adulto , Anciano , Animales , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/secundario , Línea Celular , Línea Celular Tumoral , Movimiento Celular , Progresión de la Enfermedad , Regulación hacia Abajo , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/secundario , Carcinoma de Células Escamosas de Esófago , Esófago/citología , Esófago/metabolismo , Técnicas de Silenciamiento del Gen , Estudio de Asociación del Genoma Completo , Humanos , Metástasis Linfática/genética , Masculino , Ratones , Ratones SCID , Persona de Mediana Edad , Invasividad Neoplásica/genética , Proteínas de Transporte de Catión Orgánico/deficiencia , Proteínas de Transporte de Catión Orgánico/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA