Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Immunity ; 56(8): 1761-1777.e6, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37506694

RESUMEN

Conventional dendritic cells (cDCs) are professional antigen-presenting cells that control the adaptive immune response. Their subsets and developmental origins have been intensively investigated but are still not fully understood as their phenotypes, especially in the DC2 lineage and the recently described human DC3s, overlap with monocytes. Here, using LEGENDScreen to profile DC vs. monocyte lineages, we found sustained expression of FLT3 and CD45RB through the whole DC lineage, allowing DCs and their precursors to be distinguished from monocytes. Using fate mapping models, single-cell RNA sequencing and adoptive transfer, we identified a lineage of murine CD16/32+CD172a+ DC3, distinct from DC2, arising from Ly6C+ monocyte-DC progenitors (MDPs) through Lyz2+Ly6C+CD11c- pro-DC3s, whereas DC2s develop from common DC progenitors (CDPs) through CD7+Ly6C+CD11c+ pre-DC2s. Corresponding DC subsets, developmental stages, and lineages exist in humans. These findings reveal DC3 as a DC lineage phenotypically related to but developmentally different from monocytes and DC2s.


Asunto(s)
Monocitos , Células Madre , Ratones , Humanos , Animales , Fenotipo , Células Cultivadas , Células Dendríticas , Diferenciación Celular
2.
Biochem Biophys Res Commun ; 526(2): 512-518, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32245620

RESUMEN

The post-transcriptional regulation of gene expression plays an important role in many essential biological processes. The RNA decapping enzyme Dcp2 is a crucial enzyme involved in RNA degradation. Dcp2 proteins are highly expressed in the testis and brain in adult mice. This study aimed to investigate the in vivo functions of Dcp2. An inducible Dcp2 knockout mouse model was established. No obvious health abnormalities were observed after postnatal global deletion of Dcp2 in male mice. However, Dcp2-deleted male mice were infertile and showed Sertoli cell vacuolization and germ cell degeneration. Dcp2 deletion resulted in testicular atrophy, reduced number of epididymal sperm, and increased apoptosis in seminiferous tubules. However, spermatocyte-specific deletion of Dcp2 did not compromise the fertility. The findings of this study indicated that Dcp2 was important for spermatogenesis and male fertility.


Asunto(s)
Endorribonucleasas , Infertilidad Masculina , Animales , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Masculino , Ratones , Ratones Noqueados , Espermatogénesis , Testículo/metabolismo
3.
Curr Genomics ; 21(8): 602-609, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33414681

RESUMEN

The cell is the unit of life for all organisms, and all cells are certainly not the same. So the technology to generate transcription expression or genomic DNA profiles from single cells is crucial. Since its establishment in 2009, single-cell RNA sequencing (scRNA-seq) has emerged as a major driver of progress in biomedical research. During the last three years, several new single-cell sequencing platforms have emerged. Yet there are only a few systematic comparisons of the advantages and limitations of these commonly used platforms. Here we compare two single-cell sequencing platforms: BD Rhapsody and 10x Genomics Chromium, including their different mechanisms and some scRNA-seq results obtained with them.

4.
Cell Physiol Biochem ; 46(5): 2056-2071, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29723851

RESUMEN

BACKGROUND/AIMS: Previous studies imply that telocytes may have a protective effect on fibrosis in various organs, including the liver, colon, and heart. The effect of telocytes on renal fibrosis remains unknown. Herein, this study was designed to investigate the effect of telocytes on renal fibrosis and the potential mechanisms involved. METHODS: In a unilateral ureteral obstruction (UUO)-induced renal fibrosis model, telocytes were injected via the tail vein every other day for 10 days. The degree of renal damage and fibrosis was determined using histological assessment. The expression of collagen I, fibronectin, epithelial-mesenchymal transition markers, and Smad2/3 phosphorylation was examined by western blot analyses. Real-time PCR and enzyme-linked immunosorbent assay were performed in vivo to detect the levels of transforming growth factor (TGF)-ß1 and various growth factors. RESULTS: Telocytes attenuated renal fibrosis, as evidenced by reduced interstitial collagen accumulation, decreased expression of fibronectin and collagen I, upregulation of E-cadherin, and downregulation of α-smooth muscle actin. Furthermore, telocytes decreased serum TGF-ß1 levels, suppressed Smad2/3 phosphorylation, and increased the expression of hepatocyte growth factor (HGF) in rat kidney tissue following UUO. Blockage of HGF counteracted the protective effect of telocytes on UUO-treated kidneys. Through the detection of HGF mRNA levels in vitro, we found that telocytes had no effect on HGF expression compared with renal fibroblasts. CONCLUSION: Telocytes attenuated UUO-induced renal fibrosis in rats, likely through enhancing the expression of HGF in an indirect manner.


Asunto(s)
Enfermedades Renales/etiología , Enfermedades Renales/terapia , Riñón/patología , Telocitos/trasplante , Obstrucción Ureteral/complicaciones , Animales , Células Cultivadas , Colágeno/análisis , Fibrosis , Enfermedades Renales/patología , Masculino , Ratas Sprague-Dawley
5.
Biosci Biotechnol Biochem ; 82(10): 1724-1732, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29912646

RESUMEN

The RNA decapping enzyme Dcp2 is a crucial enzyme involved in the process of RNA turnover, which can post-transcriptionally regulate gene expression. Dcp2 has been found to be highly expressed in embryonic, but not adult, kidneys. Here we showed that Dcp2 mRNA was expressed, but Dcp2 proteins were absent, in mouse kidneys after postnatal day 10 (P10). In kidneys of adult Dcp2-IRES-EGFP knock-in mice, Dcp2 was undetectable but EGFP was expressed, indicating that Dcp2 mRNA was not completely silenced in adult kidneys. Using luciferase reporter assays, we found that miR-141-3p/200a-3p directly targeted the 3' UTR of Dcp2 mRNA. Overexpression of miR-141-3p and miR-200a-3p downregulated endogenous Dcp2 protein expression. Furthermore, miR-141-3p and miR-200a-3p expression was low in embryonic kidneys but increased dramatically after P10 and was negatively correlated with Dcp2 protein expression during renal development. These results suggest miR-141-3p/200a-3p may be involved in post-transcriptional repression of Dcp2 expression during renal development. ABBREVIATIONS: IRES: internal ribosome entry site; EGFP: enhanced green fluorescent protein; UTR: untranslated region.


Asunto(s)
Endorribonucleasas/genética , Riñón/crecimiento & desarrollo , MicroARNs/genética , Procesamiento Postranscripcional del ARN , Regiones no Traducidas 3' , Animales , Silenciador del Gen , Células HEK293 , Humanos , Riñón/metabolismo , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , ARN Mensajero/genética
6.
J Hazard Mater ; 472: 134603, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38749243

RESUMEN

Polybutylene adipate terephthalic acid (PBAT) is an emerging biodegradable material in food packaging. However, concerns have been raised regarding the potential hazards it could pose to food safety. In this study, the changes of PBAT films during food contact and the release of small molecules were inestigated by a multiscale approach. On a macro-scale, the surface roughness of the films increased with the reduction in the concentration of food simulants and the increase in contact temperatures, especially after immersion in acidic food environments. On a micro-scale, the crystallinity (Xc) and degradation indexes (DI) of the films increased by 5.7-61.2% and 7.8-48.6%, respectively, which led to a decrease in thermal stability. On a scale approaching the molecular level, 2,4-di-tert-butylphenol (2,4-DTBP) was detected by gas chromatography-mass spectrometry (GC-MS/MS) with the highest migration content, and the release behavior of 2,4-DTBP was further investigated by migration kinetics. In addition, terephthalic acid (TPA), a hydrolysis product of PBAT, was detected in acidic food environments by liquid chromatography-mass spectrometry (LC-MS/MS). The results of this study could provide practical guidance and assistance to promote sustainable development in the field of food packaging.


Asunto(s)
Embalaje de Alimentos , Ácidos Ftálicos , Ácidos Ftálicos/química , Poliésteres/química , Adipatos/química , Contaminación de Alimentos/análisis , Cromatografía de Gases y Espectrometría de Masas
7.
Life Sci Alliance ; 5(8)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35470238

RESUMEN

Fundamental to viral biology is identification and annotation of viral genes and their function. Determining the level of coronavirus gene expression is inherently difficult due to the positive stranded RNA genome and the identification of subgenomic RNAs (sgRNAs) that are required for expression of most viral genes. We developed a bioinformatic pipeline to analyze metatranscriptomic data from 20 independent studies encompassing 588 individual samples and 10 coronavirus species. This comparative analysis defined a core sgRNA repertoire for SARS-CoV-2 and found novel sgRNAs that could encode functional short peptides. Relevant to coronavirus infectivity and transmission, we also observed that the ratio of Spike sgRNA to Nucleocapsid one is highest in SARS-CoV-2, among the ß-coronaviruses examined. Furthermore, the adjustment of this ratio can be made by modifications to the viral RNA replication machinery, representing a form of viral gene regulation that may be involved in host adaption.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/genética , Regulación Viral de la Expresión Génica , Humanos , ARN Viral/genética , SARS-CoV-2/genética , Replicación Viral/genética
8.
Front Immunol ; 12: 661338, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897705

RESUMEN

Background: Myeloid-derived suppressor cells (MDSCs) can prevent allograft rejection and induce immune tolerance in transplantation models. Previous studies have demonstrated that inhibition of mTOR signaling can enhance the MDSC protective effect in heart transplantation (HTx) by promoting MDSC expansion. In addition, mTOR inhibition is related to autophagy. The present study investigated the protective mechanism of mTOR-deficient monocytic MDSCs (M-MDSCs) in mouse HTx. Methods: Myeloid-specific mTOR conditional knockout mice were generated to obtain mTOR-/- M-MDSCs. The proliferation and immunosuppressive function of mTOR-/- M-MDSCs were determined by flow cytometry and T cell proliferation assays. The mTOR-/- M-MDSC intracellular autophagy levels were determined using western blotting and electron microscopy. RNAseq analysis was performed for wild-type (WT) and mTOR-/- M-MDSCs. Allogeneic HTx mouse model was established and treated with WT or mTOR-/- M-MDSCs. Enzyme-linked immunosorbent assay, flow cytometry, and immunohistochemistry assays were performed to determine WT and mTOR-/- M-MDSC-induced immune tolerance. Results: The mTOR deficiency promoted M-MDSC differentiation and enhanced intracellular autophagy levels in vivo and in vitro. mTOR deficiency also enhanced the immunosuppressive function of M-MDSCs. In addition, infusing with WT and mTOR-/- M-MDSCs prolonged cardiac allograft survival and established immune tolerance in recipient mice by inhibiting T cell activation and inducing regulatory T cells. Conclusion: mTOR deficiency enhances the immunosuppressive function of M-MDSCs and prolongs mouse cardiac allograft survival.


Asunto(s)
Diferenciación Celular/inmunología , Trasplante de Corazón/métodos , Células Supresoras de Origen Mieloide/inmunología , Serina-Treonina Quinasas TOR/inmunología , Tolerancia al Trasplante/inmunología , Aloinjertos/inmunología , Animales , Autofagia/genética , Autofagia/inmunología , Diferenciación Celular/genética , Proliferación Celular , Expresión Génica/inmunología , Tolerancia Inmunológica/genética , Tolerancia Inmunológica/inmunología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/ultraestructura , Linfocitos T/inmunología , Linfocitos T/metabolismo , Serina-Treonina Quinasas TOR/deficiencia , Serina-Treonina Quinasas TOR/genética , Tolerancia al Trasplante/genética
9.
Cell Rep Med ; 2(8): 100353, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34467243

RESUMEN

Innate lymphoid cells (ILCs) are tissue-resident lymphocytes differing from conventional T lymphocytes in having no antigen-specific receptors. ILCs include natural killer (NK) cells, helper-like ILC1s, ILC2s, and ILC3s, and lymphoid tissue-inducer (LTi) cells. Tumor ILCs are frequently found in various cancers, but their roles in cancer immunity and immunotherapy remain largely unclear. We report here the single-cell characterization of blood and gut helper-like ILC subsets in healthy conditions and in colorectal cancer (CRC). The healthy gut contains ILC1s, ILC3s, and ILC3/NKs, but no ILC2s. Additional tumor-specific ILC1-like and ILC2 subsets were identified in CRC patients. Signaling lymphocytic activation molecule family member 1 (SLAMF1) was found to be selectively expressed on tumor-specific ILCs, and higher levels of SLAMF1+ ILCs were observed in the blood of CRC patients. The SLAMF1-high group of CRC patients had a significantly higher survival rate than the SLAMF1-low group, suggesting that SLAMF1 is an anti-tumor biomarker in CRC.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Progresión de la Enfermedad , Inmunidad Innata , Linfocitos/inmunología , Análisis de la Célula Individual , Transcriptoma , Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/patología , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunidad Innata/genética , Intestinos/inmunología , Subgrupos Linfocitarios/inmunología , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo , Transcriptoma/genética
10.
Biomed Pharmacother ; 94: 1167-1175, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28826163

RESUMEN

BACKGROUND: Aristolochic acid (AA) injuries remain a serious condition associated with acute renal dysfunction. Herein, the effect and mechanism of a novel tissue protective peptide, cyclic helical B-peptide (CHBP) derived from erythropoietin, were investigated in a mice model. METHODS: Mice were randomly divided into four groups, receiving the following treatments (1: saline; 2: AA 10mg/kg; 3: AA 10mg/kg +CHBP 4nmol/kg; 4: AA 10mg/kg +CHBP 8nmol/kg). RESULTS: Blood urea nitrogen and serum creatinine was increased by AA but decreased by CHBP in a dose-dependent fashion. CHBP also significantly improved renal tubular injury and inflammatory infiltration, which was gradually increased by AA. Apoptotic cells, infiltrating inflammatory cells, and active caspase-3+ cells were greatly reduced by CHBP. In addition, CHBP inhibited caspase-3, 9 and improved bcl-2, bcl-xl protein expression in vivo. CONCLUSION: Taken together, we demonstrated, for the first time, that CHBP effectively improved renal function and tissue damage caused by AA, which maybe through reducing caspase-3 activation, apoptosis, and inflammation.


Asunto(s)
Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Ácidos Aristolóquicos/farmacología , Encefalinas/farmacología , Sustancias Protectoras/farmacología , Precursores de Proteínas/farmacología , Lesión Renal Aguda/metabolismo , Animales , Nitrógeno de la Urea Sanguínea , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Creatinina/metabolismo , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Pruebas de Función Renal/métodos , Masculino , Ratones , Ratones Endogámicos BALB C , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Proteína bcl-X/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA