Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Acta Pharmacol Sin ; 45(1): 36-51, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37684382

RESUMEN

The gut-brain axis plays a vital role in Parkinson's disease (PD). The mechanisms of gut-brain transmission mainly focus on α-synuclein deposition, intestinal inflammation and microbiota function. A few studies have shown the trigger of PD pathology in the gut. α-Synuclein is highly conserved in food products, which was able to form ß-folded aggregates and to infect the intestinal mucosa. In this study we investigated whether α-synuclein-preformed fibril (PFF) exposure could modulate the intestinal environment and induce rodent models replicating PD pathology. We first showed that PFF could be internalized into co-cultured Caco-2/HT29/Raji b cells in vitro. Furthermore, we demonstrated that PFF perfusion caused the intestinal inflammation and activation of enteric glial cells in an ex vivo intestinal organ culture and in an in vivo intestinal mouse coloclysis model. Moreover, we found that PFF exposure through regular coloclysis induced PD pathology in wild-type (WT) and A53T α-synuclein transgenic mice with various phenotypes. Particularly in A53T mice, PFF induced significant behavioral disorders, intestinal inflammation, α-synuclein deposition, microbiota dysbiosis, glial activation as well as degeneration of dopaminergic neurons in the substantia nigra. In WT mice, however, the PFF induced only mild behavioral abnormalities, intestinal inflammation, α-synuclein deposition, and glial activation, without significant changes in microbiota and dopaminergic neurons. Our results reveal the possibility of α-synuclein aggregates binding to the intestinal mucosa and modeling PD in mice. This study may shed light on the investigation and early intervention of the gut-origin hypothesis in neurodegenerative diseases.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Humanos , Ratones , Animales , alfa-Sinucleína/metabolismo , Células CACO-2 , Trastornos Parkinsonianos/metabolismo , Enfermedad de Parkinson/metabolismo , Ratones Transgénicos , Neuronas Dopaminérgicas/metabolismo , Inflamación/metabolismo
2.
Acta Pharmacol Sin ; 44(6): 1122-1134, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36627343

RESUMEN

Aggregation of α-synuclein, a component of Lewy bodies (LBs) or Lewy neurites in Parkinson's disease (PD), is strongly linked with disease development, making it an attractive therapeutic target. Inhibiting aggregation can slow or prevent the neurodegenerative process. However, the bottleneck towards achieving this goal is the lack of such inhibitors. In the current study, we established a high-throughput screening platform to identify candidate compounds for preventing the aggregation of α-synuclein among the natural products in our in-house compound library. We found that a small molecule, 03A10, i.e., (+)-desdimethylpinoresinol, which is present in the fruits of Vernicia fordii (Euphorbiaceae), modulated aggregated α-synuclein, but not monomeric α-synuclein, to prevent further elongation of α-synuclein fibrils. In α-synuclein-overexpressing cell lines, 03A10 (10 µM) efficiently prevented α-synuclein aggregation and markedly ameliorated the cellular toxicity of α-synuclein fibril seeds. In the MPTP/probenecid (MPTP/p) mouse model, oral administration of 03A10 (0.3 mg· kg-1 ·d-1, 1 mg ·kg-1 ·d-1, for 35 days) significantly alleviated behavioral deficits, tyrosine hydroxylase (TH) neuron degeneration and p-α-synuclein aggregation in the substantia nigra (SN). As the Braak hypothesis postulates that the prevailing site of early PD pathology is the gastrointestinal tract, we inoculated α-synuclein preformed fibrils (PFFs) into the mouse colon. We demonstrated that α-synuclein PFF inoculation promoted α-synuclein pathology and neuroinflammation in the gut and brain; oral administration of 03A10 (5 mg· kg-1 ·d-1, for 4 months) significantly attenuated olfactory deficits, α-synuclein accumulation and neuroinflammation in the olfactory bulb and SN. We conclude that 03A10 might be a promising drug candidate for the treatment of PD. 03A10 might be a novel drug candidate for PD treatment, as it inhibits α-synuclein aggregation by modulating aggregated α-synuclein rather than monomeric α-synuclein to prevent further elongation of α-synuclein fibrils and prevent α-synuclein toxicity in vitro, in an MPTP/p mouse model, and PFF-inoculated mice.


Asunto(s)
Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Enfermedades Neuroinflamatorias , Sustancia Negra/metabolismo , Sustancia Negra/patología , Encéfalo/metabolismo
3.
Acta Pharmacol Sin ; 43(2): 470-482, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33850276

RESUMEN

Aerobic glycolysis, also known as the Warburg effect, is a hallmark of cancer cell glucose metabolism and plays a crucial role in the activation of various types of immune cells. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) catalyzes the conversion of D-glyceraldehyde 3-phosphate to D-glycerate 1,3-bisphosphate in the 6th critical step in glycolysis. GAPDH exerts metabolic flux control during aerobic glycolysis and therefore is an attractive therapeutic target for cancer and autoimmune diseases. Recently, GAPDH inhibitors were reported to function through common suicide inactivation by covalent binding to the cysteine catalytic residue of GAPDH. Herein, by developing a high-throughput enzymatic screening assay, we discovered that the natural product 1,2,3,4,6-penta-O-galloyl-ß-D-glucopyranose (PGG) is an inhibitor of GAPDH with Ki = 0.5 µM. PGG blocks GAPDH activity by a reversible and NAD+ and Pi competitive mechanism, suggesting that it represents a novel class of GAPDH inhibitors. In-depth hydrogen deuterium exchange mass spectrometry (HDX-MS) analysis revealed that PGG binds to a region that disrupts NAD+ and inorganic phosphate binding, resulting in a distal conformational change at the GAPDH tetramer interface. In addition, structural modeling analysis indicated that PGG probably reversibly binds to the center pocket of GAPDH. Moreover, PGG inhibits LPS-stimulated macrophage activation by specific downregulation of GAPDH-dependent glucose consumption and lactate production. In summary, PGG represents a novel class of GAPDH inhibitors that probably reversibly binds to the center pocket of GAPDH. Our study sheds new light on factors for designing a more potent and specific inhibitor of GAPDH for future therapeutic applications.


Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasas/antagonistas & inhibidores , Taninos Hidrolizables/farmacología , Animales , Evaluación Preclínica de Medicamentos/métodos , Glucosa/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/antagonistas & inhibidores , Humanos , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Ácido Láctico/metabolismo , Espectroscopía de Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Compuestos Organometálicos , Reacción en Cadena en Tiempo Real de la Polimerasa
4.
Neurochem Res ; 46(3): 686-698, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33389470

RESUMEN

28-O-caffeoyl betulin (B-CA) has been demonstrated to reduce the cerebral infarct volume caused by transient middle cerebral artery occlusion (MCAO) injury. B-CA is a novel derivative of naturally occurring caffeoyl triterpene with little information associated with its pharmacological target(s). To date no data is available regarding the effect of B-CA on brain metabolism. In the present study, a 1H-NMR-based metabolomics approach was applied to investigate the therapeutic effects of B-CA on brain metabolism following MCAO in rats. Global metabolic profiles of the cortex in acute period (9 h after focal ischemia onset) after MCAO were compared between the groups (sham; MCAO + vehicle; MCAO + B-CA). MCAO induced several changes in the ipsilateral cortex of ischemic rats, which consequently led to the neuronal damage featured with the downregulation of NAA, including energy metabolism dysfunctions, oxidative stress, and neurotransmitter metabolism. Treatment with B-CA showed statistically significant rescue effects on the ischemic cortex of MCAO rats. Specifically, treatment with B-CA ameliorated the energy metabolism dysfunctions (back-regulating the levels of succinate, lactate, BCAAs, and carnitine), oxidative stress (upregulating the level of glutathione), and neurotransmitter metabolism disturbances (back-regulating the levels of γ-aminobutyric acid and acetylcholine) associated with the progression of ischemic stroke. With the administration of B-CA, the levels of three phospholipid related metabolites (O-phosphocholine, O-phosphoethanolamine, sn-glycero-3-phosphocholine) and NAA improved significantly. Overall, our findings suggest that treatment with B-CA may provide neuroprotection by augmenting the metabolic changes observed in the cortex following MCAO in rats.


Asunto(s)
Corteza Cerebral/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Enfermedades Metabólicas/metabolismo , Metaboloma/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Triterpenos/uso terapéutico , Animales , Corteza Cerebral/efectos de los fármacos , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Masculino , Enfermedades Metabólicas/tratamiento farmacológico , Metabolómica , Espectroscopía de Protones por Resonancia Magnética , Curva ROC , Ratas Sprague-Dawley
5.
Acta Pharmacol Sin ; 42(12): 2155-2172, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33931765

RESUMEN

LianhuaQingwen capsule, prepared from an herbal combination, is officially recommended as treatment for COVID-19 in China. Of the serial pharmacokinetic investigations we designed to facilitate identifying LianhuaQingwen compounds that are likely to be therapeutically important, the current investigation focused on the component Glycyrrhiza uralensis roots (Gancao). Besides its function in COVID-19 treatment, Gancao is able to induce pseudoaldosteronism by inhibiting renal 11ß-HSD2. Systemic and colon-luminal exposure to Gancao compounds were characterized in volunteers receiving LianhuaQingwen and by in vitro metabolism studies. Access of Gancao compounds to 11ß-HSD2 was characterized using human/rat, in vitro transport, and plasma protein binding studies, while 11ß-HSD2 inhibition was assessed using human kidney microsomes. LianhuaQingwen contained a total of 41 Gancao constituents (0.01-8.56 µmol/day). Although glycyrrhizin (1), licorice saponin G2 (2), and liquiritin/liquiritin apioside (21/22) were the major Gancao constituents in LianhuaQingwen, their poor intestinal absorption and access to colonic microbiota resulted in significant levels of their respective deglycosylated metabolites glycyrrhetic acid (8), 24-hydroxyglycyrrhetic acid (M2D; a new Gancao metabolite), and liquiritigenin (27) in human plasma and feces after dosing. These circulating metabolites were glucuronized/sulfated in the liver and then excreted into bile. Hepatic oxidation of 8 also yielded M2D. Circulating 8 and M2D, having good membrane permeability, could access (via passive tubular reabsorption) and inhibit renal 11ß-HSD2. Collectively, 1 and 2 were metabolically activated to the pseudoaldosterogenic compounds 8 and M2D. This investigation, together with such investigations of other components, has implications for precisely defining therapeutic benefit of LianhuaQingwen and conditions for its safe use.


Asunto(s)
Antivirales/farmacocinética , Tratamiento Farmacológico de COVID-19 , Medicamentos Herbarios Chinos/farmacocinética , Fitoquímicos/farmacocinética , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/antagonistas & inhibidores , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/metabolismo , Administración Oral , Animales , Antivirales/administración & dosificación , Antivirales/efectos adversos , Disponibilidad Biológica , Biotransformación , Cápsulas , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/efectos adversos , Femenino , Glycyrrhiza/efectos adversos , Células HEK293 , Humanos , Síndrome de Liddle/inducido químicamente , Síndrome de Liddle/enzimología , Masculino , Seguridad del Paciente , Fitoquímicos/administración & dosificación , Fitoquímicos/efectos adversos , Ratas Sprague-Dawley , Medición de Riesgo
6.
Acta Pharmacol Sin ; 40(10): 1259-1268, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31089202

RESUMEN

Increasing evidence suggests that there is a correlation between type 2 diabetes mellitus (T2D) and Alzheimer's disease (AD). Increased Aß polypeptide production in AD patients would promote metabolic abnormalities, insulin signaling dysfunction and perturbations in glucose utilization, thus leading to the onset of T2D. However, the metabolic mechanisms underlying the interplay between AD and its diabetes-promoting effects are not fully elucidated. Particularly, systematic metabolomics analysis has not been performed for the pancreas tissues of AD subjects, which play key roles in the glucose metabolism of living systems. In the current study, we characterized the dynamic metabolic profile alterations of the serum and the pancreas of APP/PS1 double-transgenic mice (an AD mouse model) using the untargeted metabolomics approaches. Serum and pancreatic tissues of APP/PS1 transgenic mice and wild-type mice were extracted and subjected to NMR analysis to evaluate the functional state of pancreas in the progress of AD. Multivariate analysis of principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were conducted to define the global and the local (pancreas) metabolic features associated with the possible initiation of T2D in the progress of AD. Our results showed the onset of AD-induced global glucose metabolism disorders in AD mice. Hyperglycemia and its accompanying metabolic disorders including energy metabolism down-regulation and oxidative stress were observed in the serum of AD mice. Meanwhile, global disturbance of branched-chain amino acid (BCAA) metabolism was detected, and the change of BCAA (leucine) was positively correlated to the alteration of glucose. Moreover, increased level of glucose and enhanced energy metabolism were observed in the pancreas of AD mice. The results suggest that the diabetes-promoting effects accompanying the progress of AD are achieved by down-regulating the global utilization of glucose and interfering with the metabolic function of pancreas. Since T2D is a risk factor for the pathogenesis of AD, our findings suggest that targeting the glucose metabolism dysfunctions might serve as a supplementary therapeutic strategy for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Metabolómica , Páncreas/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Diabetes Mellitus Tipo 2/patología , Femenino , Humanos , Análisis de los Mínimos Cuadrados , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Páncreas/patología
7.
Molecules ; 23(3)2018 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-29498708

RESUMEN

SET7, serving as the only histone methyltransferase that monomethylates 'Lys-4' of histone H3, has been proved to function as a key regulator in diverse biological processes, such as cell proliferation, transcriptional network regulation in embryonic stem cell, cell cycle control, protein stability, heart morphogenesis and development. What's more, SET7 is involved inthe pathogenesis of alopecia aerate, breast cancer, tumor and cancer progression, atherosclerosis in human carotid plaques, chronic renal diseases, diabetes, obesity, ovarian cancer, prostate cancer, hepatocellular carcinoma, and pulmonary fibrosis. Therefore, there is urgent need to develop novel SET7 inhibitors. In this paper, based on DC-S239 which has been previously reported in our group, we employed scaffold hopping- and 2D fingerprint-based similarity searches and identified DC-S285 as the new hit compound targeting SET7 (IC50 = 9.3 µM). Both radioactive tracing and NMR experiments validated the interactions between DC-S285 and SET7 followed by the second-round similarity search leading to the identification ofDC-S303 with the IC50 value of 1.1 µM. In cellular level, DC-S285 retarded tumor cell proliferation and showed selectivity against MCF7 (IC50 = 21.4 µM), Jurkat (IC50 = 2.2 µM), THP1 (IC50 = 3.5 µM), U937 (IC50 = 3.9 µM) cell lines. Docking calculations suggested that DC-S303 share similar binding mode with the parent compoundDC-S239. What's more, it presented good selectivity against other epigenetic targets, including SETD1B, SETD8, G9a, SMYD2 and EZH2. DC-S303 can serve as a drug-like scaffold which may need further optimization for drug development, and can be used as chemical probe to help the community to better understand the SET7 biology.


Asunto(s)
Anilidas/síntesis química , Antineoplásicos/síntesis química , Inhibidores Enzimáticos/síntesis química , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Impresión Molecular , Tiofenos/síntesis química , Anilidas/farmacología , Antineoplásicos/farmacología , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Expresión Génica , Células HL-60 , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Células Jurkat , Células MCF-7 , Simulación del Acoplamiento Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Relación Estructura-Actividad , Células THP-1 , Tiofenos/farmacología
9.
Acta Pharmacol Sin ; 37(7): 984-93, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27238211

RESUMEN

AIM: Fragment-based lead discovery (FBLD) is a complementary approach in drug research and development. In this study, we established an NMR-based FBLD platform that was used to screen novel scaffolds targeting human bromodomain of BRD4, and investigated the binding interactions between hit compounds and the target protein. METHODS: 1D NMR techniques were primarily used to generate the fragment library and to screen compounds. The inhibitory activity of hits on the first bromodomain of BRD4 [BRD4(I)] was examined using fluorescence anisotropy binding assay. 2D NMR and X-ray crystallography were applied to characterize the binding interactions between hit compounds and the target protein. RESULTS: An NMR-based fragment library containing 539 compounds was established, which were clustered into 56 groups (8-10 compounds in each group). Eight hits with new scaffolds were found to inhibit BRD4(I). Four out of the 8 hits (compounds 1, 2, 8 and 9) had IC50 values of 100-260 µmol/L, demonstrating their potential for further BRD4-targeted hit-to-lead optimization. Analysis of the binding interactions revealed that compounds 1 and 2 shared a common quinazolin core structure and bound to BRD4(I) in a non-acetylated lysine mimetic mode. CONCLUSION: An NMR-based platform for FBLD was established and used in discovery of BRD4-targeted compounds. Four potential hit-to-lead optimization candidates have been found, two of them bound to BRD4(I) in a non-acetylated lysine mimetic mode, being selective BRD4(I) inhibitors.


Asunto(s)
Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Proteínas Nucleares/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores , Proteínas de Ciclo Celular , Polarización de Fluorescencia , Humanos , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad
10.
Chem Biodivers ; 12(2): 273-83, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25676508

RESUMEN

Four new polyhydroxylated steroids, 1-4, and the racemic form of cyclopentenone 9, together with four known steroids, 5-8, one known cyclopentenone derivative, 10, and one known butenolide derivative, 11, were isolated from the soft coral Sinularia acuta collected from Weizhou Island of Guangxi Province, P. R. China. Their structures were elucidated on the basis of spectroscopic analyses and by comparison of the corresponding data with those previously reported. The cytotoxicities of the isolates 1-11 in vitro against the selected tumor cell lines HL-60, HeLa, and K562 were evaluated. Compounds 2 and 5 showed potent cytotoxicities against HL-60 cell lines with IC50 values of 7.3 and 9.9 µM, respectively. Compounds 5 and 6 showed moderate activities against K562 cell lines with IC50 values of 10.9 and 11.7 µM, respectively, while compounds 1, 2, and 6 showed weak activities against HeLa cell lines with respective IC50 values of 44.8, 27.1, and 18.2 µM. This is the first report on chemical and bioactivity research of S. acuta.


Asunto(s)
Antozoos/química , Ciclopentanos/química , Esteroides/química , Animales , Antozoos/metabolismo , Apoptosis/efectos de los fármacos , Ciclopentanos/aislamiento & purificación , Ciclopentanos/toxicidad , Células HL-60 , Células HeLa , Humanos , Hidroxilación , Células K562 , Espectroscopía de Resonancia Magnética , Conformación Molecular , Esteroides/aislamiento & purificación , Esteroides/toxicidad
11.
Acta Pharmacol Sin ; 35(5): 697-706, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24632844

RESUMEN

AIM: To test the hypothesis that the traditional Chinese medicine Cordyceps sinensis could improve the metabolic function of extrarenal organs to achieve its anti-chronic kidney disease (CKD) effects. METHODS: Male SD rats were divided into CKD rats (with 5/6-nephrectomy), CKD rats treated with Cordyceps sinensis (4 mg•kg-1•d-1, po), and sham-operated rats. After an 8-week treatment, metabolites were extracted from the hearts and livers of the rats, and then subjected to (1)H-NMR-based metabolomic analysis. RESULTS: Oxidative stress, energy metabolism, amino acid and protein metabolism and choline metabolism were considered as links between CKD and extrarenal organ dysfunction. Within the experimental period of 8 weeks, the metabolic disorders in the liver were more pronounced than in the heart, suggesting that CKD-related extrarenal organ dysfunctions occurred sequentially rather than simultaneously. Oral administration of Cordyceps sinensis exerted statistically significant rescue effects on the liver and heart by reversely regulating levels of those metabolites that are typically perturbed in CKD. CONCLUSION: Oral administration of Cordyceps sinensis significantly attenuates the liver and heart injuries in CKD rats. The (1)H NMR-based metabolomic approach has provided a systematic view for understanding of CKD and the drug treatment, which can also be used to elucidate the mechanisms of action of other traditional Chinese medicines.


Asunto(s)
Cordyceps/metabolismo , Lesiones Cardíacas/tratamiento farmacológico , Hepatopatías/tratamiento farmacológico , Metaboloma/efectos de los fármacos , Sustancias Protectoras/farmacología , Insuficiencia Renal Crónica/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Corazón , Lesiones Cardíacas/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hepatopatías/metabolismo , Masculino , Medicina Tradicional China/métodos , Metabolómica/métodos , Ratas , Insuficiencia Renal Crónica/metabolismo
12.
Yao Xue Xue Bao ; 48(1): 14-24, 2013 Jan.
Artículo en Zh | MEDLINE | ID: mdl-23600136

RESUMEN

As an extension of the structure-based drug discovery, fragment-based drug discovery is matured increasingly, and plays an important role in drug development. Fragments in a small library, with lower molecular mass and high "ligand efficiency", are detected by SPR, MS, NMR, X-ray crystallography technologies and other biophysical methods. Then they are considered as starting points for chemical optimization with the guidance of structural biology methods to get good "drug-like" lead and candidate compounds. In this article, we reviewed the current progress of fragment-based drug discovery and detailed a number of examples to illustrate the novel strategies.


Asunto(s)
Descubrimiento de Drogas/métodos , Fragmentos de Péptidos/síntesis química , Diseño Asistido por Computadora , Cristalografía por Rayos X , Ligandos , Espectroscopía de Resonancia Magnética , Fragmentos de Péptidos/química , Conformación Proteica , Bibliotecas de Moléculas Pequeñas , Resonancia por Plasmón de Superficie
13.
Br J Pharmacol ; 180(23): 3071-3091, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37461816

RESUMEN

BACKGROUND AND PURPOSE: The scaffold molecule Axin2 is constitutively activated in colorectal cancer (CRC) and functions as a potent promoter of CRC behaviour. Pharmacological targeting of Axin2 may therefore exert a therapeutic effect in patients with CRC. Here, we discovered a potent small-molecule inhibitor of Axin2, based on the mechanism by which Axin2 is regulated post-translationally, and investigated its antitumour effects. EXPERIMENTAL APPROACH: Compound discovery and its inhibitory action on Axin2 protein were revealed by microscale thermophoresis, in vitro kinase assay, quantitative kinetic assay, immunoblotting/immunoprecipitation, RT-qPCR and cycloheximide pulse-chase assay. Compound antitumour effects and the underlying mechanisms were evaluated in multiple cell-based assays and mouse models. KEY RESULTS: We discovered that glycogen synthase kinase 3ß (GSK3ß) phosphorylates Axin2 at two consensus motifs and coupled Axin2 phosphorylation to its ubiquitination (mediated by the E3 ligase ß-Trcp2) and proteasomal degradation. The binding of Axin2 to GSK3ß in CRC cells is faint, which enables most of the Axin2 protein to maintain an unphosphorylated status and thereby permits the cells to preserve high levels of Axin2. Importantly, we identified a small-molecule compound CW85319 that enhances Axin2's interaction with GSK3ß via forming a high affinity for Axin2. Treatment of CRC cells with CW85319 enhanced Axin2 binding with GSK3ß, thereby promoting Axin2 phosphorylation, subsequent ubiquitination, and degradation. Furthermore, we demonstrated that CW85319 efficiently suppressed Axin2-driven CRC growth and metastasis, without eliciting side toxicity. CONCLUSIONS AND IMPLICATIONS: These findings suggest that pharmacological targeting of Axin2 by CW85319 may provide therapeutic benefits against certain human cancers, especially CRC.


Asunto(s)
Neoplasias Colorrectales , Ratones , Animales , Humanos , Línea Celular Tumoral , Glucógeno Sintasa Quinasa 3 beta , Modelos Animales de Enfermedad , Immunoblotting , Neoplasias Colorrectales/metabolismo , Proteína Axina/metabolismo
14.
J Chromatogr A ; 1491: 87-97, 2017 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-28256254

RESUMEN

Targeted identification of potentially bioactive molecules from herbal medicines is often stymied by the insufficient chromatographic separation, ubiquitous matrix interference, and pervasive isomerism. An enhanced targeted identification strategy is presented and validated by the selective identification of flavonoid O-glycosides (FOGs) from Carthamus tinctorius. It consists of four steps: (i) enhanced separation and detection by offline two-dimensional liquid chromatography/LTQ-Orbitrap MS (offline 2D-LC/LTQ-Orbitrap MS) using collision-induced dissociation (CID) and high-energy C-trap dissociation (HCD); (ii) improved identification of the major aglycones by acid hydrolysis and LC-SPE-NMR; (iii) simplified spectral elucidation by high-resolution diagnostic product ions/neutral loss filtering; and (iv) more convincing structural identification by matching an in-house library. An offline 2D-LC system configuring an Acchrom XAmide column and a BEH Shield RP-18 UPLC® column enabled much better separation of the easily co-eluting components. Combined use of CID and HCD could produce complementary fragmentation information. The intensity ratios of the aglycone ion species ([Y0-H]-/Y0- and [Y0-2H]-/Y0-) in the HCD-MS2 spectra were found diagnostic for discriminating the aglycone subtypes and characterizing the glycosylation patterns. Five aglycone structures (kaempferol, 6-hydroxykaempferol, 6-methoxykaempferol, carthamidin, and isocarthamidin) were identified based on the 1H-NMR data recorded by LC-SPE-NMR. Of the 107 characterized flavonoids, 80 FOGs were first reported from C. tinctorius. Unknown aglycones, pentose, and novel acyl substituents were discovered. A new compound thereof was isolated and fully identified, which could partially validate the MS-oriented identification. This integral strategy can improve the potency, efficiency, and accuracy in the detection of new compounds from medicinal herbs and other natural sources.


Asunto(s)
Carthamus tinctorius/química , Cromatografía Liquida/métodos , Flavonoides , Glicósidos , Espectrometría de Masas/métodos , Flavonoides/análisis , Flavonoides/química , Flavonoides/aislamiento & purificación , Glicósidos/análisis , Glicósidos/química , Glicósidos/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Extracción en Fase Sólida
15.
Toxicon ; 43(8): 895-900, 2004 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-15208022

RESUMEN

BmKK2 (alpha-KTx 14.2) is one of the novel short-chain peptides found in molecular cloning of a venom gland cDNA library from Asian scorpion Buthus martensi Karsch. Based upon its amino acid sequence, the peptide was proposed to adopt a classical alpha/beta-scaffold for alpha-KTxs. In the present study, we purified BmKK2 from the venom of B. martensi Karsch, and investigated its action on voltage-dependent K+ currents in dissociated hippocampal neurons from neonatal rats. BmKK2 (10-100 microM) selectively inhibited the delayed rectifier K+ current, but did not affect the fast transient K+ current. The inhibition of BmKK2 on the delayed rectifier K+ current was reversible and voltage-independent. The peptide did not affect the steady-state activation of the current, but caused a depolarizing shift (about 9 mV) of its steady-state inactivation curve. The results demonstrate that BmKK2 is a novel K+ channel-blocking scorpion peptide.


Asunto(s)
Neuronas/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Venenos de Escorpión/farmacología , Escorpiones/química , Secuencia de Aminoácidos , Animales , Transporte Biológico Activo/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Biblioteca de Genes , Datos de Secuencia Molecular , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/aislamiento & purificación , Ratas , Venenos de Escorpión/aislamiento & purificación , Alineación de Secuencia , Análisis de Secuencia de Proteína , Factores de Tiempo
16.
Toxicon ; 42(2): 199-205, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12906891

RESUMEN

A novel short-chain peptide BmKK4 was isolated from the venom of Asian scorpion Buthus martensi Karsch. It is composed of 30 amino acids including six cysteine residues, and shares less than 25% sequence identity with the known alpha-KTx toxins. The action of BmKK4 on voltage-dependent potassium currents was examined in acutely dissociated hippocampal neurons of rat. BmKK4 (10-100 microM) inhibited both the delayed rectifier and fast transient potassium current in concentration-dependent manners. The inhibition was reversible and voltage-independent. BmKK4 caused a depolarizing shift (about 10 mV) of the steady-state activation curve of the currents, without changing their steady-state inactivation behavior. The unique amino acid sequence and electrophysiological effects suggest that BmKK4 represent a new subfamily of potassium channel toxins.


Asunto(s)
Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , Canales de Potasio/metabolismo , Venenos de Escorpión/química , Venenos de Escorpión/aislamiento & purificación , Venenos de Escorpión/toxicidad , Escorpiones , Secuencia de Aminoácidos , Animales , Hipocampo/citología , Hipocampo/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Datos de Secuencia Molecular , Neuronas/metabolismo , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Canales de Potasio con Entrada de Voltaje/metabolismo , Ratas , Ratas Sprague-Dawley , Alineación de Secuencia
17.
Artículo en Inglés | MEDLINE | ID: mdl-12075421

RESUMEN

To purify and characterize peptides from the venom of Chinese scorpion Buthus martensi Karsch, the purification was carried out by gel-filtration, ion exchange and reversed phase HPLC techniques. The purified peptide was reduced by dithioerythritol (DTT), S-alkylated with iodoacetic acid, and subjected to enzymatic cleavages (TPCK-trypsin). The purified fragments from enzymatic cleavage of the peptide were separated by C(18)HPLC, then submitted to the ESI-MS, and Edman degradation for amino acid sequence determination. The mixture was also subjected to tandem mass (MS-MS) analysis. As a result, a novel peptide, named BmK4112, was obtained, with the primary structure being TPYPV NCKTD RDCVM CGLGI SCKNG YCTGQ C, and having three disulfide bonds.

18.
Artículo en Inglés | MEDLINE | ID: mdl-12136196

RESUMEN

Relative quantitation RT-PCR was used to investigate the regulation of leptin expression in 3T3-F442A adipocytes by glucose and insulin. The results showed that glucose and insulin stimulated the expression of leptin in 3T3-F442A adipocytes, but they did not act synergically. Over-high concentration of glucose suppressed the expression of leptin and the effect of insulin. The elevation of the expression of leptin was characterized with saturation. The concentration of glucose is very important for the regulation of leptin expression.

19.
Acta Pharmacol Sin ; 24(10): 1016-20, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14531945

RESUMEN

AIM: To examine the effect of BmTx3B, a novel short-chain peptide isolated from the venom of Asian scorpion Buthus martensi Karsch, on voltage-gated potassium channels. METHODS: Two types of voltage-dependent potassium currents were recorded from dissociated hippocampal neurons of neonatal rat in whole-cell voltage-clamp mode, and separated based upon their kinetic properties. RESULTS: BmTx3B (10-100 micromol/L) selectively inhibited the delayed rectifier potassium current (I(K)), without affecting the fast transient potassium current (I(A)). The inhibition of the peptide on I(K) was reversible, concentration-dependent and voltage-independent. BmTx3B did not affect the steady-state activation and inactivation kinetics of the current. CONCLUSION: The short-chain scorpion peptide BmTx3B selectively blocked the delayed rectifier potassium channel.


Asunto(s)
Hipocampo/fisiología , Materia Medica/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/efectos de los fármacos , Venenos de Escorpión/farmacología , Escorpiones , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Canales de Potasio de Tipo Rectificador Tardío , Hipocampo/citología , Materia Medica/aislamiento & purificación , Datos de Secuencia Molecular , Neuronas/fisiología , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/aislamiento & purificación , Ratas , Ratas Sprague-Dawley , Venenos de Escorpión/aislamiento & purificación , Escorpiones/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA