Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Methods ; 222: 112-121, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38215898

RESUMEN

Design of molecules for candidate compound selection is one of the central challenges in drug discovery due to the complexity of chemical space and requirement of multi-parameter optimization. Here we present an application scenario-oriented platform (ID4Idea) for molecule generation in different scenarios of drug discovery. This platform utilizes both library or rule based and generative based algorithms (VAE, RNN, GAN, etc.), in combination with various AI learning types (pre-training, transfer learning, reinforcement learning, active learning, etc.) and input representations (1D SMILES, 2D graph, 3D shape, binding site, pharmacophore, etc.), to enable customized solutions for a given molecular design scenario. Besides the usual generation followed screening protocol, goal-directed molecule generation can also be conducted towards predefined goals, enhancing the efficiency of hit identification, lead finding, and lead optimization. We demonstrate the effectiveness of ID4Idea platform through case studies, showcasing customized solutions for different design tasks using various input information, such as binding pockets, pharmacophores, and compound representations. In addition, remaining challenges are discussed to unlock the full potential of AI models in drug discovery and pave the way for the development of novel therapeutics.


Asunto(s)
Diseño de Fármacos , Descubrimiento de Drogas , Sitios de Unión , Algoritmos , Biblioteca de Genes
2.
Plant J ; 116(6): 1737-1747, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37694805

RESUMEN

Dicer-like (DCL) proteins are principal components of RNA silencing, a major defense mechanism against plant virus infections. However, their functions in suppressing virus-induced disease phenotypes remain largely unknown. Here, we identified a role for tomato (Solanum lycopersicum) DCL2b in regulating the wiry leaf phenotype during defense against tobacco mosaic virus (TMV). Knocking out SlyDCL2b promoted TMV accumulation in the leaf primordium, resulting in a wiry phenotype in distal leaves. Biochemical and bioinformatics analyses showed that 22-nt virus-derived small interfering RNAs (vsiRNAs) accumulated less abundantly in slydcl2b mutants than in wild-type plants, suggesting that SlyDCL2b-dependent 22-nt vsiRNAs are required to exclude virus from leaf primordia. Moreover, the wiry leaf phenotype was accompanied by upregulation of Auxin Response Factors (ARFs), resulting from a reduction in trans-acting siRNAs targeting ARFs (tasiARFs) in TMV-infected slydcl2b mutants. Loss of tasiARF production in the slydcl2b mutant was in turn caused by inhibition of miRNA390b function. Importantly, silencing SlyARF3 and SlyARF4 largely restored the wiry phenotype in TMV-infected slydcl2b mutants. Our work exemplifies the complex relationship between RNA viruses and the endogenous RNA silencing machinery, whereby SlyDCL2b protects the normal development of newly emerging organs by excluding virus from these regions and thus maintaining developmental silencing.


Asunto(s)
Virus de Plantas , Solanum lycopersicum , Virus del Mosaico del Tabaco , Virus del Mosaico del Tabaco/fisiología , Solanum lycopersicum/genética , Virus de Plantas/genética , ARN Interferente Pequeño/genética , Ácidos Indolacéticos , Hojas de la Planta/genética , Fenotipo , Enfermedades de las Plantas
3.
Ecol Lett ; 27(6): e14463, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38924275

RESUMEN

Understanding the interactions among anthropogenic stressors is critical for effective conservation and management of ecosystems. Freshwater scientists have invested considerable resources in conducting factorial experiments to disentangle stressor interactions by testing their individual and combined effects. However, the diversity of stressors and systems studied has hindered previous syntheses of this body of research. To overcome this challenge, we used a novel machine learning framework to identify relevant studies from over 235,000 publications. Our synthesis resulted in a new dataset of 2396 multiple-stressor experiments in freshwater systems. By summarizing the methods used in these studies, quantifying trends in the popularity of the investigated stressors, and performing co-occurrence analysis, we produce the most comprehensive overview of this diverse field of research to date. We provide both a taxonomy grouping the 909 investigated stressors into 31 classes and an open-source and interactive version of the dataset (https://jamesaorr.shinyapps.io/freshwater-multiple-stressors/). Inspired by our results, we provide a framework to help clarify whether statistical interactions detected by factorial experiments align with stressor interactions of interest, and we outline general guidelines for the design of multiple-stressor experiments relevant to any system. We conclude by highlighting the research directions required to better understand freshwater ecosystems facing multiple stressors.


Asunto(s)
Ecosistema , Agua Dulce , Actividades Humanas , Estrés Fisiológico
4.
J Transl Med ; 22(1): 593, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918793

RESUMEN

BACKGROUND: Sorafenib resistance is becoming increasingly common and disadvantageous for hepatocellular carcinoma (HCC) treatment. Ferroptosis is an iron dependent programmed cell death underlying the mechanism of sorafenib. Iron is crucial for synthesis of cofactors essential to mitochondrial enzymes and necessary for HCC proliferation, while mitochondrial iron overload and oxidative stress are associated with sorafenib induced ferroptosis. However, the crosstalk among iron homeostasis and sorafenib resistance is unclear. METHODS: We conducted bioinformatics analysis of sorafenib treated HCC datasets to analyze GCN5L1 and iron related gene expression with sorafenib resistance. GCN5L1 deleted HCC cell lines were generated by CRISPR technology. Sorafenib resistant HCC cell line was established to validate dataset analysis and evaluate the effect of potential target. RESULTS: We identified GCN5L1, a regulator of mitochondrial acetylation, as a modulator in sorafenib-induced ferroptosis via affecting mitochondrial iron homeostasis. GCN5L1 deficiency significantly increased sorafenib sensitivity in HCC cells by down-regulating mitochondrial iron transporters CISD1 expression to induce iron accumulation. Mitochondrial iron accumulation leads to an acceleration in cellular and lipid ROS. Sorafenib resistance is related to CISD1 overexpression to release mitochondrial iron and maintaining mitochondrial homeostasis. We combined CISD1 inhibitor NL-1 with sorafenib, which significantly enhanced sorafenib-induced ferroptosis by promoting mitochondrial iron accumulation and lipid peroxidation. The combination of NL-1 with sorafenib enhanced sorafenib efficacy in vitro and in vivo. CONCLUSIONS: Our findings demonstrate that GCN5L1/CISD1 axis is crucial for sorafenib resistance and would be a potential therapeutic strategy for sorafenib resistant HCC.


Asunto(s)
Carcinoma Hepatocelular , Resistencia a Antineoplásicos , Ferroptosis , Homeostasis , Hierro , Neoplasias Hepáticas , Mitocondrias , Sorafenib , Sorafenib/farmacología , Sorafenib/uso terapéutico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/tratamiento farmacológico , Hierro/metabolismo , Humanos , Homeostasis/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Línea Celular Tumoral , Animales , Ferroptosis/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Ratones Desnudos , Especies Reactivas de Oxígeno/metabolismo , Ratones , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
5.
Liver Int ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597373

RESUMEN

BACKGROUND AND AIMS: Iron overload, oxidative stress and ferroptosis are associated with liver injury in alcohol-associated liver disease (ALD), however, the crosstalk among these regulatory pathways in ALD development is unclear. METHODS: ALD mouse model and general control of amino acid synthesis 5 like 1 (GCN5L1) liver knockout mice were generated to investigate the role of GCN5L1 in ALD development. Proteomic screening tests were performed to identify the key factors mediating GCN5L1 loss-induced ALD. RESULTS: Gene Expression Omnibus data set analysis indicates that GCN5L1 expression is negatively associated with ALD progression. GCN5L1 hepatic knockout mice develop severe liver injury and lipid accumulation when fed an alcohol diet. Screening tests identified that GCN5L1 targeted the mitochondrial iron transporter CISD1 to regulate mitochondrial iron homeostasis in ethanol-induced ferroptosis. GCN5L1-modulated CISD1 acetylation and activity were crucial for iron accumulation and ferroptosis in response to alcohol exposure. CONCLUSION: Pharmaceutical modulation of CISD1 activity is critical for cellular iron homeostasis and ethanol-induced ferroptosis. The GCN5L1/CISD1 axis is crucial for oxidative stress and ethanol-induced ferroptosis in ALD and is a promising avenue for novel therapeutic strategies.

6.
BMC Cardiovasc Disord ; 24(1): 35, 2024 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184523

RESUMEN

BACKGROUND AND OBJECTIVE: Cardiac rehabilitation (CR) has been demonstrated to improve outcomes in patients with acute myocardial infarction (AMI) after percutaneous coronary intervention (PCI). However, the optimal CR initiation time and duration remain to be determined. This study aimed to explore the impact of the time factors on the CR outcomes in AMI patients who received PCI by the method of meta-regression analysis. METHODS: We searched five databases (PubMed, Embase, Cochrane Library, Web of Science and Google scholar) up to October 31, 2023. Meta-regression analysis was utilized to explore the impact of the time factors on the effect sizes. Subgroups with more than 3 studies were used for meta-regression analysis. RESULTS: Our analysis included 16 studies and a total of 1810 patients. The meta-regression analysis revealed that the initiation time and duration of CR had no significant impact on the occurrence of arrhythmia, coronary artery restenosis and angina pectoris. The initiation time and duration of CR also had no significant impact on the changes in left ventricular ejection fraction (LVEF, starting time: estimate = 0.160, p = 0.130; intervention time: estimate = 0.017, p = 0.149), left ventricular end-diastolic volume (LVEDV, starting time: estimate = - 0.191, p = 0.732; intervention time: estimate = - 0.033, p = 0.160), left ventricular end-systolic volume (LVESV, starting time: estimate = - 0.301, p = 0.464; intervention time: estimate = 0.015, p = 0.368) and 6-minute walk test (6MWT, starting time: estimate = - 0.108, p = 0.467; intervention time: estimate = 0.019, p = 0.116). CONCLUSION: Implementation of CR following PCI in patients with AMI is beneficial. However, in AMI patients, there is no significant difference in the improvement of CR outcomes based on different CR starting times within 1 month after PCI or different durations of the CR programs. It indicates that it is feasible for patients with AMI to commence CR within 1 month after PCI and continue long-term CR, but the time factors which impact CR are intricate and further clinical research is still needed to determine the optimal initiation time and duration of CR.


Asunto(s)
Rehabilitación Cardiaca , Infarto del Miocardio , Intervención Coronaria Percutánea , Humanos , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/terapia , Intervención Coronaria Percutánea/métodos , Volumen Sistólico , Factores de Tiempo , Función Ventricular Izquierda
7.
J Environ Manage ; 350: 119594, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37995485

RESUMEN

Microorganisms play a critical role in maintaining the delicate balance of ecosystem services. However, the assembly processes that shape microbial communities are vulnerable to a range of environmental stressors, such as climate change, eutrophication, and the use of herbicides. Despite the importance of these stressors, little is known about their cumulative impacts on microbial community assembly in aquatic ecosystems. To address this knowledge gap, we established 48 mesocosm experiments that simulated shallow lake ecosystems and subjected them to warming (including continuous warming (W) and heat waves (H)), glyphosate-based herbicides (G), and nutrient loading (E). Our study revealed that in the control group, both deterministic and stochastic processes codominated the assembly of microbial communities in water, whereas in sediment, the processes were primarily stochastic. Interestingly, the effects of multiple stress factors on assembly in these two habitats were completely opposite. Specifically, stressors promoted the dominance of stochastic processes in water but increased the importance of deterministic processes in sediment. Furthermore, warming amplified the effects of herbicides but exerted an opposite and stronger influence on assembly compared to nutrients, emphasizing the complexity of these mechanisms and the significance of considering multiple stressors. The interaction of some factors significantly affected assembly (p < 0.05), with the effects of WEG being most pronounced in water. Both water and sediment exhibited homogeneous assembly of microbial communities (mean NTI >0), but the phylogenetic clustering of microbial communities in water was more closely related (NTI >2). Our research revealed the response model of microbial community assembly in aquatic ecosystems to multiple environmental stresses, such as agricultural pollution, climate change, and eutrophication, and indicated that microbial community changes in sediment may be an important predictor of lake ecosystem development. This provides scientific evidence that better environmental management can reduce impacts on aquatic ecosystems under the threat of future warming.


Asunto(s)
Herbicidas , Microbiota , Ecosistema , Filogenia , Eutrofización , Agua
8.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(3): 505-511, 2024 Jun 18.
Artículo en Zh | MEDLINE | ID: mdl-38864137

RESUMEN

OBJECTIVE: To investigate the effect of tofacitinib, a pan-Janus kinase (JAK) inhibitor, on transforming growth factor-beta 1 (TGF-ß1)-induced fibroblast to myofibroblast transition (FMT) and to explore its mechanism. To provide a theoretical basis for the clinical treatment of connective tissue disease-related interstitial lung disease (CTD-ILD). METHODS: (1) Human fetal lung fibroblast 1 (HFL-1) were cultured in vitro, and 6 groups were established: DMSO blank control group, TGF-ß1 induction group, and TGF-ß1 with different concentrations of tofacitinib (0.5, 1.0, 2.0, 5.0 µmol/L) drug intervention experimental groups. CCK-8 was used to measure the cell viability, and wound-healing assay was performed to measure cell migration ability. After 48 h of combined treatment, quantitative real-time PCR (RT-PCR) and Western blotting were used to detect the gene and protein expression levels of α-smooth muscle actin (α-SMA), fibronectin (FN), and collagen type Ⅰ (COL1). (2) RT-PCR and enzyme-linked immunosorbnent assay (ELISA) were used to detect the interleukin-6 (IL-6) gene and protein expression changes, respectively. (3) DMSO carrier controls, 1.0 µmol/L and 5.0 µmol/L tofacitinib were added to the cell culture media of different groups for pre-incubation for 30 min, and then TGF-ß1 was added to treat for 1 h, 6 h and 24 h. The phosphorylation levels of Smad2/3 and signal transducer and activator of transcription 3 (STAT3) protein were detected by Western blotting. RESULTS: (1) Tofacitinib inhibited the viability and migration ability of HFL-1 cells after TGF-ß1 induction. (2) The expression of α-SMA, COL1A1 and FN1 genes of HFL-1 in the TGF-ß1-induced groups was significantly up-regulated compared with the blank control group (P < 0.05). Compared with the TGF-ß1 induction group, α-SMA expression in the 5.0 µmol/L tofacitinib intervention group was significantly inhi-bited (P < 0.05). Compared with the TGF-ß1-induced group, FN1 gene was significantly inhibited in each intervention group at a concentration of 0.5-5.0 µmol/L (P < 0.05). Compared with the TGF-ß1-induced group, the COL1A1 gene expression in each intervention group did not change significantly. (3) Western blotting results showed that the protein levels of α-SMA and FN1 in the TGF-ß1-induced group were significantly higher than those in the control group (P < 0.05), and there was no significant difference in the expression of COL1A1. Compared with the TGF-ß1-induced group, the α-SMA protein level in the intervention groups with different concentrations decreased. And the differences between the TGF-ß1-induced group and 2.0 µmol/L or 5.0 µmol/L intervention groups were statistically significant (P < 0.05). Compared with the TGF-ß1-induced group, the FN1 protein levels in the intervention groups with different concentrations showed a downward trend, but the difference was not statistically significant. There was no difference in COL1A1 protein expression between the intervention groups compared with the TGF-ß1-induced group. (4) After TGF-ß1 acted on HFL-1 cells for 48 h, the gene expression of the IL-6 was up-regulated and IL-6 in culture supernatant was increased, the intervention with tofacitinib partly inhibited the TGF-ß1-induced IL-6 gene expression and IL-6 in culture supernatant. TGF-ß1 induced the increase of Smad2/3 protein phosphorylation in HFL-1 cells for 1 h and 6 h, STAT3 protein phosphorylation increased at 1 h, 6 h and 24 h, the pre-intervention with tofacitinib inhibited the TGF-ß1-induced Smad2/3 phosphorylation at 6 h and inhibited TGF-ß1-induced STAT3 phosphorylation at 1 h, 6 h and 24 h. CONCLUSION: Tofacitinib can inhibit the transformation of HFL-1 cells into myofibroblasts induced by TGF-ß1, and the mechanism may be through inhibiting the classic Smad2/3 pathway as well as the phosphorylation of STAT3 induced by TGF-ß1, thereby protecting the disease progression of pulmonary fibrosis.


Asunto(s)
Fibroblastos , Pulmón , Miofibroblastos , Piperidinas , Pirimidinas , Factor de Transcripción STAT3 , Transducción de Señal , Factor de Crecimiento Transformador beta1 , Humanos , Pirimidinas/farmacología , Piperidinas/farmacología , Factor de Transcripción STAT3/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/citología , Miofibroblastos/efectos de los fármacos , Pulmón/citología , Transducción de Señal/efectos de los fármacos , Fibronectinas/metabolismo , Movimiento Celular/efectos de los fármacos , Pirroles/farmacología , Actinas/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Quinasas Janus/metabolismo , Supervivencia Celular/efectos de los fármacos , Proteína Smad2/metabolismo , Enfermedades Pulmonares Intersticiales/metabolismo , Interleucina-6/metabolismo , Proteína smad3/metabolismo , Células Cultivadas
9.
BMC Genomics ; 24(1): 380, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37415142

RESUMEN

BACKGROUND: Microspore embryogenesis is an extraordinarily complicated process, comprehensively regulated by a composite network of physiological and molecular factors, among which hormone is one of the most crucial factors. Auxin is required for stress-induced microspore reprogramming, however, the mechanism of its regulation of microspore embryogenesis is still unclear. RESULTS: In this study, we found exogenously spraying 100 mg·L- 1 IAA on the buds of Wucai significantly increased the rate of microspore embryogenesis, and moreover accelerated the process of embryogenesis. Physiological and biochemical tests showed that the contents of amino acids, soluble total sugar, soluble protein, and starch were significantly increased after IAA treatment. Furthermore, exogenously spraying 100 mg·L- 1 IAA significantly enhanced IAA, GA4, and GA9 content, increased catalase (CAT) and malondialdehyde (MDA) activity, and reduced abscisic acid (ABA), MDA and soluble protopectin content, H2O2 and O2·- production rate in the bud with the largest population of late-uninucleate-stage microspores. Transcriptome sequencing was performed on buds respectively treated with 100 mg·L- 1 IAA and fresh water. A total of 2004 DEGs were identified, of which 79 were involved in micropores development, embryonic development and cell wall formation and modification, most of which were upregulated. KEGG and GO analysis revealed that 9.52% of DEGs were enriched in plant hormone synthesis and signal transduction pathways, pentose and glucuronic acid exchange pathways, and oxidative phosphorylation pathways. CONCLUSIONS: These findings indicated that exogenous IAA altered the contents of endogenous hormone content, total soluble sugar, amino acid, starch, soluble protein, MDA and protopectin, the activities of CAT and peroxidase (POD), and the production rate of H2O2 and O2·-. Combined with transcriptome analysis, it was found that most genes related to gibberellin (GA) and Auxin (IAA) synthesis and signal transduction, pectin methylase (PME) and polygalacturonase (PGs) genes and genes related to ATP synthesis and electron transport chain were upregulated, and genes related to ABA synthesis and signal transduction were downregulated. These results indicated that exogenous IAA treatment could change the balance of endogenous hormones, accelerate cell wall degradation, promote ATP synthesis and nutrient accumulation, inhibit ROS accumulation, which ultimately promote microspore embryogenesis.


Asunto(s)
Brassica , Brassica/metabolismo , Peróxido de Hidrógeno/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Almidón/metabolismo , Metabolismo Energético , Hormonas/metabolismo , Pared Celular/metabolismo , Adenosina Trifosfato/metabolismo
10.
Acc Chem Res ; 55(8): 1171-1182, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35344662

RESUMEN

Supramolecular assembly is commonly driven by noncovalent interactions (e.g., hydrogen bonding, electrostatic, hydrophobic, and aromatic interactions) and plays a predominant role in multidisciplinary research areas ranging from materials design to molecular biology. Understanding these noncovalent interactions at the molecular level is important for studying and designing supramolecular assemblies in chemical and biological systems. Cation-π interactions, initially found through their influence on protein structure, are generally formed between electron-rich π systems and cations (mainly alkali, alkaline-earth metals, and ammonium). Cation-π interactions play an essential role in many biological systems and processes, such as potassium channels, nicotinic acetylcholine receptors, biomolecular recognition and assembly, and the stabilization and function of biomacromolecular structures. Early fundamental studies on cation-π interactions primarily focused on computational calculations, protein crystal structures, and gas- and solid-phase experiments. With the more recent development of spectroscopic and nanomechanical techniques, cation-π interactions can be characterized directly in aqueous media, offering opportunities for the rational manipulation and incorporation of cation-π interactions into the design of supramolecular assemblies. In 2012, we reported the essential role of cation-π interactions in the strong underwater adhesion of Asian green mussel foot proteins deficient in l-3,4-dihydroxyphenylalanine (DOPA) via direct molecular force measurements. In another study in 2013, we reported the experimental quantification and nanomechanics of cation-π interactions of various cations and π electron systems in aqueous solutions using a surface forces apparatus (SFA).Over the past decade, much progress has been achieved in probing cation-π interactions in aqueous solutions, their impact on the underwater adhesion and cohesion of different soft materials, and the fabrication of functional materials driven by cation-π interactions, including surface coatings, complex coacervates, and hydrogels. These studies have demonstrated cation-π interactions as an important driving force for engineering functional materials. Nevertheless, compared to other noncovalent interactions, cation-π interactions are relatively less investigated and underappreciated in governing the structure and function of supramolecular assemblies. Therefore, it is imperative to provide a detailed overview of recent advances in understanding of cation-π interactions for supramolecular assembly, and how these interactions can be used to direct supramolecular assembly for various applications (e.g., underwater adhesion). In this Account, we present very recent advances in probing and applying cation-π interactions for mussel-inspired supramolecular assemblies as well as their structural and functional characteristics. Particular attention is paid to experimental characterization techniques for quantifying cation-π interactions in aqueous solutions. Moreover, the parameters responsible for modulating the strengths of cation-π interactions are discussed. This Account provides useful insights into the design and engineering of smart materials based on cation-π interactions.


Asunto(s)
Hidrogeles , Proteínas , Cationes/química , Hidrogeles/química , Enlace de Hidrógeno , Proteínas/química , Electricidad Estática , Agua
11.
Opt Express ; 31(14): 22569-22579, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37475364

RESUMEN

The self-accelerating beams such as the Airy beam show great potentials in many applications including optical manipulation, imaging and communication. However, their superior features during linear propagation could be easily corrupted by optical nonlinearity or spatial incoherence individually. Here we investigate how the interaction of spatial incoherence and nonlinear propagation affect the beam quality of Airy beam, and find that the two destroying factors can in fact balance each other. Our results show that the influence of coherence and nonlinearity on the propagation of partially incoherent Airy beams (PIABs) can be formulated as two exponential functions that have factors of opposite signs. With appropriate spatial coherence length, the PIABs not only resist the corruption of beam profile caused by self-focusing nonlinearity, but also exhibits less anomalous diffraction caused by the self-defocusing nonlinearity. Our work provides deep insight into how to maintain the beam quality of self-accelerating Airy beams by exploiting the interaction between partially incoherence and optical nonlinearity. Our results may bring about new possibilities for optimizing partially incoherent structured field and developing related applications such as optical communication, incoherent imaging and optical manipulations.

12.
Biomacromolecules ; 24(11): 5394-5402, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37870194

RESUMEN

Intrinsic hemostasis is an innate body response to prevent bleeding based on the sol-gel transition of blood. However, it is often inadequate for exceptional situations, such as acute injury and coagulation disorders, which typically require immediate medical intervention. Herein, we report the preparation of an efficient hemostatic powder, composed of tannic acid (TA), poly(ethylene glycol) (PEG), and poly(d,l-lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(d,l-lactide-co-glycolide) triblock copolymer (TB), for biomimetic hemostasis at the bleeding sites. TA has a high affinity for biomolecules and cells and can form coacervates with PEG driven by hydrogen bonding. TB enhances the mechanical strength and provides thermoresponsiveness. The hemostatic powder can rapidly transit into a physical and biodegradable seal on wet substrates under physiological conditions, demonstrating its promise for the generation of instant artificial clots. Importantly, this process is independent of the innate blood clotting process, which could benefit those with blood clotting disorders. This biomimetic hemostatic powder is an adaptive topical sealing agent for noncompressible and irregular wounds, which is promising for biomedical applications.


Asunto(s)
Biomimética , Hemostáticos , Polvos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Polímeros , Polietilenglicoles/química , Hemostáticos/farmacología
13.
Bioorg Med Chem Lett ; 87: 129260, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36997005

RESUMEN

Development of protein-protein interaction (PPI) inhibitors remains a major challenge. A significant number of PPIs are mediated by helical recognition epitopes; although peptides derived from such epitopes are attractive templates for inhibitor design, they may not readily adopt a bioactive conformation, are susceptible to proteolysis and rarely elicit optimal cell uptake properties. Constraining peptides has therefore emerged as a useful method to mitigate against these liabilities in the development of PPI inhibitors. Building on our recently reported method for constraining peptides by reaction of dibromomaleimide derivatives with two cysteines positioned in an i and i + 4 relationship, in this study, we showcase the power of the method for rapid identification of ideal constraining positions using a maleimide-staple scan based on a 19-mer sequence derived from the BAD BH3 domain. We found that the maleimide constraint had little or a detrimental impact on helicity and potency in most sequences, but successfully identified i, i + 4 positions where the maleimide constraint was tolerated. Analyses using modelling and molecular dynamics (MD) simulations revealed that the inactive constrained peptides likely lose interactions with the protein as a result of introducing the constraint.


Asunto(s)
Proteínas Proto-Oncogénicas c-bcl-2 , Proteínas Proto-Oncogénicas , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Secuencia de Aminoácidos , Proteína bcl-X/metabolismo , Péptidos/química , Epítopos/metabolismo , Maleimidas/farmacología , Apoptosis , Unión Proteica
14.
J Chem Inf Model ; 63(16): 5341-5355, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37549337

RESUMEN

Computer-aided drug design (CADD), especially artificial intelligence-driven drug design (AIDD), is increasingly used in drug discovery. In this paper, a novel and efficient workflow for hit identification was developed within the ID4Inno drug discovery platform, featuring innovative artificial intelligence, high-accuracy computational chemistry, and high-performance cloud computing. The workflow was validated by discovering a few potent hit compounds (best IC50 is ∼0.80 µM) against PI5P4K-ß, a novel anti-cancer target. Furthermore, by applying the tools implemented in ID4Inno, we managed to optimize these hit compounds and finally obtained five hit series with different scaffolds, all of which showed high activity against PI5P4K-ß. These results demonstrate the effectiveness of ID4inno in driving hit identification based on artificial intelligence, computational chemistry, and cloud computing.


Asunto(s)
Inteligencia Artificial , Química Computacional , Diseño de Fármacos , Descubrimiento de Drogas/métodos
15.
Environ Sci Technol ; 57(32): 11767-11778, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37535835

RESUMEN

Climate change and eutrophication are two environmental threats that can alter the structure of freshwater ecosystems and their service functions, but we know little about how ecosystem structure and function will evolve in future scenarios of climate warming. Therefore, we created different experimental climate scenarios, including present-day conditions, a 3.0 °C increase in mean temperature, and a "heatwaves" scenario (i.e., an increase in temperature variability) to assess the effects of climate change on phytoplankton communities under simultaneous stress from eutrophication and herbicides. We show that the effects of climate warming, particularly heatwaves, are associated with elevated cyanobacterial abundances and toxin production, driven by a change from mainly nontoxic to toxic Microcystis spp. The reason for higher cyanobacterial toxin concentrations is likely an increase in abundances because under the dual pressures of climate warming and eutrophication individual Microcystis toxin-producing ability decreased. Eutrophication and higher temperatures significantly increased the biomass of Microcystis, leading to an increase in the cyanobacterial toxin concentrations. In contrast, warming alone did not produce higher cyanobacterial abundances or cyanobacterial toxin concentrations likely due to the depletion of the available nutrient pool. Similarly, the herbicide glyphosate alone did not affect abundances of any phytoplankton taxa. In the case of nutrient enrichment, cyanobacterial toxin concentrations were much higher than under warming alone due to a strong boost in biomass of potential cyanobacterial toxin producers. From a broader perspective our study shows that in a future warmer climate, nutrient loading has to be reduced if toxic cyanobacterial dominance is to be controlled.


Asunto(s)
Cianobacterias , Ecosistema , Toxinas de Cianobacterias , Eutrofización , Fitoplancton , Biomasa , Cambio Climático , Lagos
16.
Biotechnol Lett ; 45(10): 1279-1291, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37505340

RESUMEN

Scallops have become an important aquaculture species in China because they contain high-quality protein, and scallops are important health food that combines multiple effects and high economic benefits. However, scallop aquaculture is perennially threatened by various pathogenic Vibrio species, leading to great economic losses. We obtained a strain of pathogenic bacteria, identified as Vibrio alginolyticus, from the diseased Azumapecten farreri in the scallop farming area of Huangdao District in 2018, and V. alginolyticus is one of the major shellfish pathogens. We showed that V. alginolyticus was isolated and identified as a pathogen in A. farreri for the first time. In this study, we evaluated its morphology and performed a phylogenetic analysis based on 16S rRNA gene sequencing. In addition, we performed a preliminary analysis of its pathogenic mechanisms. The Hfq protein in V. alginolyticus is an important RNA-binding protein in the quorum-sensing system that not only affects the sensitivity of Vibrio to environmental stress but also regulates a variety of functions, such as cell membrane formation, motility, and virulence towards the host. However, its effect on the pathogenesis of V. alginolyticus to A. farreri is unclear. To further investigate the pathogenic mechanism of the Hfq protein in V. alginolyticus to A. farreri, we used the CRISPR-Cas9 system to target and deplete the hfq gene fragment in V. alginolyticus and obtained the mutant strain V. ΔHfq-. We found that the peripheral flagellum of the mutant strain was lost, which reduced the motility of V. alginolyticus. Therefore, the deletion of target genes by the CRISPR/Cas9 genome editing system confirmed that the Hfq protein played a key role in reducing the ability of V. alginolyticus to infect A. farreri. In conclusion, our current findings provided valuable insights into the healthy culture of scallops.


Asunto(s)
Sistemas CRISPR-Cas , Vibrio alginolyticus , Vibrio alginolyticus/genética , Filogenia , ARN Ribosómico 16S , Tecnología
17.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37569319

RESUMEN

Talaromyces purpurogenus, an endophytic fungus, exhibits beneficial effects on plants during plant-fungus interactions. However, the molecular mechanisms underlying plants' responses to T. purpurogenus under low-phosphorous (P) stress are not fully understood. In this study, we investigated the transcriptomic changes in maize with low-P-sensitive (31778) and -tolerant (CCM454) genotypes under low-P stress and its symbiotic interaction with T. purpurogenus. Its colonization enhanced plant growth and facilitated P uptake, particularly in 31778. Transcriptome sequencing revealed that 135 DEGs from CCM454 and 389 from 31778 were identified, and that only 6 DEGs were common. This suggested that CCM454 and 31778 exhibited distinct molecular responses to T. purpurogenus inoculation. GO and KEGG analysis revealed that DEGs in 31778 were associated with nicotianamine biosynthesis, organic acid metabolic process, inorganic anion transport, biosynthesis of various secondary metabolites and nitrogen metabolism. In CCM454, DEGs were associated with anthocyanin biosynthesis, diterpenoid biosynthesis and metabolic process. After T. purpurogenus inoculation, the genes associated with phosphate transporter, phosphatase, peroxidase and high-affinity nitrate transporter were upregulated in 31778, whereas AP2-EREBP-transcription factors were detected at significantly higher levels in CCM454. This study provided insights on the molecular mechanisms underlying plant-endophytic fungus symbiosis and low-P stress in maize with low-P-sensitive and -tolerant genotypes.


Asunto(s)
Simbiosis , Transcriptoma , Simbiosis/genética , Zea mays/metabolismo , Perfilación de la Expresión Génica , Genotipo , Fósforo/metabolismo , Regulación de la Expresión Génica de las Plantas
18.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36769071

RESUMEN

The 26S proteasome is an ATP-dependent proteolytic complex in eukaryotes, which is mainly responsible for the degradation of damaged and misfolded proteins and some regulatory proteins in cells, and it is essential to maintain the balance of protein levels in the cell. The ubiquitin-26S proteasome pathway, which targets a wide range of protein substrates in plants, is an important post-translational regulatory mechanism involved in various stages of plant growth and development and in the maturation process of fleshy fruits. Fleshy fruit ripening is a complex biological process, which is the sum of a series of physiological and biochemical reactions, including the biosynthesis and signal transduction of ripening related hormones, pigment metabolism, fruit texture changes and the formation of nutritional quality. This paper reviews the structure of the 26S proteasome and the mechanism of the ubiquitin-26S proteasome pathway, and it summarizes the function of this pathway in the ripening process of fleshy fruits.


Asunto(s)
Frutas , Ubiquitina , Ubiquitina/metabolismo , Frutas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Factores de Transcripción
19.
J Environ Manage ; 338: 117810, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37003220

RESUMEN

The modeling and mapping of soil organic carbon (SOC) has advanced through the rapid growth of Earth observation data (e.g., Sentinel) collection and the advent of appropriate tools such as the Google Earth Engine (GEE). However, the effects of differing optical and radar sensors on SOC prediction models remain uncertain. This research aims to investigate the effects of different optical and radar sensors (Sentinel-1/2/3 and ALOS-2) on SOC prediction models based on long-term satellite observations on the GEE platform. We also evaluate the relative impact of four synthetic aperture radar (SAR) acquisition configurations (polarization mode, band frequency, orbital direction and time window) on SOC mapping with multiband SAR data from Spain. Twelve experiments involving different satellite data configurations, combined with 4027 soil samples, were used for building SOC random forest regression models. The results show that the synthesis mode and choice of satellite images, as well as the SAR acquisition configurations, influenced the model accuracy to varying degrees. Models based on SAR data involving cross-polarization, multiple time periods and "ASCENDING" orbits outperformed those involving copolarization, a single time period and "DESCENDING" orbits. Moreover, combining information from different orbital directions and polarization modes improved the soil prediction models. Among the SOC models based on long-term satellite observations, the Sentinel-3-based models (R2 = 0.40) performed the best, while the ALOS-2-based model performed the worst. In addition, the predictive performance of MSI/Sentinel-2 (R2 = 0.35) was comparable with that of SAR/Sentinel-1 (R2 = 0.35); however, the combination (R2 = 0.39) of the two improved the model performance. All the predicted maps involving Sentinel satellites had similar spatial patterns that were higher in northwest Spain and lower in the south. Overall, this study provides insights into the effects of different optical and radar sensors and radar system parameters on soil prediction models and improves our understanding of the potential of Sentinels in developing soil carbon mapping.


Asunto(s)
Carbono , Suelo , Carbono/análisis , Radar , Motor de Búsqueda , España , Monitoreo del Ambiente/métodos
20.
J Environ Manage ; 345: 118753, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37625285

RESUMEN

Understanding the interactive effects of multiple environmental stressors on biological communities is crucial for effective environmental management and biodiversity conservation. Here, we present the results of an outdoor mesocosm experiment examining how an aquatic food web responds to the individual and combined effects of climate warming, heat waves, nutrient enrichment, and herbicide exposure. To assess ecosystem functioning, we examined energy flow, using stable isotope analysis integrated with the bioenergetics food web approach to quantify energy fluxes among trophic levels. Our results revealed that the combined effects of these stressors altered the pattern of energy fluxes within the food web. Under warming conditions, there was an increase in energy flux from producers and primary consumers to secondary consumers. However, we did not observe a significant increase in energy flux in primary consumers, potentially due to enhanced top-down control. Nutrient enrichment increased energy flux from producers to higher trophic levels while simultaneously decreasing detrital energy flux. Herbicide exposure did not significantly affect herbivory energy flux but did reduce detritivory energy flux, particularly from detritus to primary consumers. The interactive effects we observed were primarily antagonistic or additive, although we also detected reversed and synergistic effects. The responses to multiple stressors varied across different energy flow pathways, leading to an asymmetric response. Furthermore, our results also revealed significant differences in the effects of constant warming and heat waves, either alone or in combination with water pollution. The asymmetric response of energy flow pathways and the prevalence of antagonistic effects present significant challenges for ecosystem restoration. Together, our findings provide novel and clear evidence of the complex mechanisms by which the coexistence of stressors can differently affect the pathways of energy flux across trophic levels in aquatic ecosystems. Regulatory strategies for ecosystems should comprehensively consider responses at multi-trophic levels using a network perspective, especially in the face of combinations of global and local stressors.


Asunto(s)
Cadena Alimentaria , Herbicidas , Ecosistema , Clima , Eutrofización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA