Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Cell Int ; 19: 337, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31866765

RESUMEN

BACKGROUND: Muscle-invasive bladder cancer (MIBC) is originated in the muscle wall of the bladder, and is the ninth most common malignancy worldwide. However, there are no reliable, accurate and robust gene signatures for MIBC prognosis prediction, which is of the importance in assisting oncologists to make a more accurate evaluation in clinical practice. METHODS: This study used univariable and multivariable Cox regression models to select gene signatures and build risk prediction model, respectively. The t-test and fold change methods were used to perform the differential expression analysis. The hypergeometric test was used to test the enrichment of the differentially expressed genes in GO terms or KEGG pathways. RESULTS: In the present study, we identified three prognostic genes, KLK6, TNS1, and TRIM56, as the best subset of genes for muscle-invasive bladder cancer (MIBC) risk prediction. The validation of this stratification method on two datasets demonstrated that the stratified patients exhibited significant difference in overall survival, and our stratification was superior to three other stratifications. Consistently, the high-risk group exhibited worse prognosis than low-risk group in samples with and without lymph node metastasis, distant metastasis, and radiation treatment. Moreover, the upregulated genes in high-risk MIBC were significantly enriched in several cancer-related pathways. Notably, PDGFRB, a receptor for platelet-derived growth factor of PI3K-Akt signaling pathway, and TUBA1A were identified as two targets of multiple drugs. In addition, the angiogenesis-related genes, as well as two marker genes of M2 macrophage, CD163 and MRC1, were highly upregulated in high-risk MIBC. CONCLUSIONS: In summary, this study investigated the underlying molecular mechanism and potential therapeutic targets associated with worse prognosis of high-risk MIBC, which could improve our understanding of progression of MIBC and provide new therapeutic strategies for the MIBC patients.

2.
J Hepatocell Carcinoma ; 10: 369-382, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36915393

RESUMEN

Background: FAT atypical cadherin 1 (FAT1) acts as a tumor suppressor or oncogene, which regulates cell adherence, proliferation, motility, and actin kinetics. FAT1 gene expression is closely related to hepatocarcinogenesis; however, the function and mechanism of FAT1 in hepatocellular carcinoma (HCC) remain unclear. Methods: Here, we screened for the FAT1, which is intimately linked to the development and progression of HCC, both in circulating tumor cells (CTCs) and tumor tissues using next generation sequencing (NGS). Immunohistochemical staining was performed to detect FAT1 protein expression. To determine the impact of FAT1 on epithelial-mesenchymal transition (EMT), migration and invasion of HCC, an in vitro transwell assay and Western blot were performed. Moreover, Gene Set Enrichment Analysis was carried out to discover the underlying mechanism. Finally, animal experiments were conducted to confirm the effects of FAT1 on HCC metastasis and tumorigenicity. Results: Our results showed that FAT1 expression was decreased in HCC tissues, while in vitro and in vivo, the FAT1 knockdown facilitated invasion, cell motility, colony formation, and proliferation. FAT1 knockdown also resulted in decreased expression of E-cadherin and markedly elevated expression of N-cadherin, vimentin, and snail. We also confirmed our hypothesis from the analysis of group differences in the CTC phenotype and lung metastasis in nude mice. Conclusion: Our findings illustrated that FAT1 played a negative regulatory role in the HCC EMT and metastasis, providing further evidence for the role played by FAT1 in the formation and progression of HCC.

3.
Cancer Manag Res ; 11: 10801-10806, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31920389

RESUMEN

Despite advancements in diagnosis and therapy, relapse of rectal cancer after clinical complete remission (cCR) remains a frequent event. The key factors influencing the treatment strategy for the management of patients achieving cCR following neoadjuvant chemoradiotherapy (Neo-CRT) remain to be identified. We present the case of a 64-year-old man with rectal cancer. The patient was initially admitted to the hospital in September 2011 with a 3-month history of change in his stools. Following his re-hospitalization in November 2011, a biopsy specimen of the neoplasm suggested the presence of rectal adenocarcinoma; laboratory investigations also revealed elevated levels of carcinoembryonic antigens (CEA; carbohydrate antigen 199) in the serum. Subsequently, the patient received Neo-CRT, as well as symptomatic and supportive treatment. The level of serum CEA returned to normal, without signs of swollen lymph nodes in the pelvic cavity. The patient was diagnosed with rectal cancer based on the elevated level of serum CEA, colonoscopy, and contrast-enhanced magnetic resonance imaging. He relapsed 4 months after cCR following Neo-CRT and underwent laparoscopic Miles' surgery in April 2013. The relapse may have been mainly attributed to residual tumor cells. This case report and literature review may contribute to the clinical recognition of treatment for patients with rectal cancer achieving cCR following Neo-CRT.

4.
Front Oncol ; 9: 392, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31157168

RESUMEN

Hepatocellular carcinoma (HCC) is the leading cause of cancer-related deaths worldwide. Despite advances in the diagnosis and treatment of HCC, incidence, and mortality continue to rise. For accurate diagnosis and treatment of HCC, there is an urgent need to precisely understand the molecular mechanisms underlying HCC tumorigenesis and progression. Accumulating evidence showed that circRNAs, which are normally produced by scrambling of exons at the splicing process, are recognized as a novel class of endogenous noncoding RNA, which have microRNA sponging properties. In this study, we aim to investigate the circRNA-100338 mediated downstream pathway, and evaluate its association with clinicopathological parameters. Integrated analysis of circRNA-100338, miR-141-3p, and target genes revealed that RHEB, a key regulator in mTOR signaling pathway, was the target of miR-141-3p in hepatitis B-related HCC. CircRNA-100338 regulates the activity of mTOR signaling pathway in vitro. IHC analysis revealed that mTOR signaling pathway was more active in HCC tissues with elevated circRNA-100338 expression. These results indicated that circRNA-100338 could regulate mTOR signaling pathway through circRNA-100338/miR-141-3p/RHEB axis. Finally, correlation analysis of RHEB and EIF5 expression with clinicopathological parameters of HCC patients revealed that the circRNA-100338, RHEB, and EIF5 were indicators of poor prognosis in hepatitis B-related HCC. In conclusion, elevated circRNA-100338 activates mTOR signaling pathway in HCC via circRNA-100338/miR-141-3p/RHEB axis and associates with poor prognosis of hepatitis B-related HCC patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA