Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Immunity ; 56(8): 1761-1777.e6, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37506694

RESUMEN

Conventional dendritic cells (cDCs) are professional antigen-presenting cells that control the adaptive immune response. Their subsets and developmental origins have been intensively investigated but are still not fully understood as their phenotypes, especially in the DC2 lineage and the recently described human DC3s, overlap with monocytes. Here, using LEGENDScreen to profile DC vs. monocyte lineages, we found sustained expression of FLT3 and CD45RB through the whole DC lineage, allowing DCs and their precursors to be distinguished from monocytes. Using fate mapping models, single-cell RNA sequencing and adoptive transfer, we identified a lineage of murine CD16/32+CD172a+ DC3, distinct from DC2, arising from Ly6C+ monocyte-DC progenitors (MDPs) through Lyz2+Ly6C+CD11c- pro-DC3s, whereas DC2s develop from common DC progenitors (CDPs) through CD7+Ly6C+CD11c+ pre-DC2s. Corresponding DC subsets, developmental stages, and lineages exist in humans. These findings reveal DC3 as a DC lineage phenotypically related to but developmentally different from monocytes and DC2s.


Asunto(s)
Monocitos , Células Madre , Ratones , Humanos , Animales , Fenotipo , Células Cultivadas , Células Dendríticas , Diferenciación Celular
2.
EMBO J ; 39(2): e102201, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31762063

RESUMEN

The innate immune sensor NLRP3 assembles an inflammasome complex with NEK7 and ASC to activate caspase-1 and drive the maturation of proinflammatory cytokines IL-1ß and IL-18. NLRP3 inflammasome activity must be tightly controlled, as its over-activation is involved in the pathogenesis of inflammatory diseases. Here, we show that NLRP3 inflammasome activation is suppressed by a centrosomal protein Spata2. Spata2 deficiency enhances NLRP3 inflammasome activity both in the macrophages and in an animal model of peritonitis. Mechanistically, Spata2 recruits the deubiquitinase CYLD to the centrosome for deubiquitination of polo-like kinase 4 (PLK4), the master regulator of centrosome duplication. Deubiquitination of PLK4 facilitates its binding to and phosphorylation of NEK7 at Ser204. NEK7 phosphorylation in turn attenuates NEK7 and NLRP3 interaction, which is required for NLRP3 inflammasome activation. Pharmacological or shRNA-mediated inhibition of PLK4, or mutation of the NEK7 Ser204 phosphorylation site, augments NEK7 interaction with NLRP3 and causes increased NLRP3 inflammasome activation. Our study unravels a novel centrosomal regulatory pathway of inflammasome activation and may provide new therapeutic targets for the treatment of NLRP3-associated inflammatory diseases.


Asunto(s)
Centrosoma/inmunología , Enzima Desubiquitinante CYLD/metabolismo , Inflamasomas/inmunología , Quinasas Relacionadas con NIMA/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas/fisiología , Animales , Centrosoma/metabolismo , Citocinas/metabolismo , Enzima Desubiquitinante CYLD/genética , Modelos Animales de Enfermedad , Inflamasomas/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Quinasas Relacionadas con NIMA/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Peritonitis/inmunología , Peritonitis/metabolismo , Peritonitis/patología , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Ubiquitinación
3.
BMC Plant Biol ; 24(1): 170, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443797

RESUMEN

BACKGROUND: Panax notoginseng (Burk) F. H. Chen is one of the most famous Chinese traditional medicinal plants. The taproot is the main organ producing triterpenoid saponins, and its development is directly linked to the quality and yield of the harvested P. notoginseng. However, the mechanisms underlying the dynamic metabolic changes occurring during taproot development of P. notoginseng are unknown. RESULTS: We carried out metabolomic and transcriptomic analyses to investigate metabolites and gene expression during the development of P. notoginseng taproots. The differentially accumulated metabolites included amino acids and derivatives, nucleotides and derivatives, and lipids in 1-year-old taproots, flavonoids and terpenoids in 2- and 3-year-old taproots, and phenolic acids in 3-year-old taproots. The differentially expressed genes (DEGs) are related to phenylpropanoid biosynthesis, metabolic pathway and biosynthesis of secondary metabolites at all three developmental stages. Integrative analysis revealed that the phenylpropanoid biosynthesis pathway was involved in not only the development of but also metabolic changes in P. notoginseng taproots. Moreover, significant accumulation of triterpenoid saponins in 2- and 3-year-old taproots was highly correlated with the up-regulated expression of cytochrome P450s and uridine diphosphate-dependent glycosyltransferases genes. Additionally, a gene encoding RNase-like major storage protein was identified to play a dual role in the development of P. notoginseng taproots and their triterpenoid saponins synthesis. CONCLUSIONS: These results elucidate the molecular mechanism underlying the accumulation of and change relationship between primary and secondary metabolites in P. notoginseng taproots, and provide a basis for the quality control and genetic improvement of P. notoginseng.


Asunto(s)
Panax notoginseng , Saponinas , Triterpenos , Panax notoginseng/genética , Metaboloma , Perfilación de la Expresión Génica
4.
Planta ; 259(2): 50, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285114

RESUMEN

MAIN CONCLUSION: The oxidosqualene cyclases (OSCs) generating triterpenoid skeletons in Cyclocarya paliurus were identified for the first time, and two uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyzing the glycosylation of flavonoids were characterized. Cyclocarya paliurus, a native rare dicotyledonous plant in China, contains an abundance of triterpenoid saponins and flavonoid glycosides that exhibit valuable pharmaceutical effects in preventing hypertension, hyperlipidemia, and diabetes. However, the molecular mechanism explaining the biosynthesis of triterpenoid saponin and flavonoid glycoside in C. paliurus remains unclear. In this study, the triterpene content in different tissues and the expression pattern of genes encoding the key enzymes associated with triterpenoid saponin and flavonoid glycoside biosynthesis were studied using transcriptome and metabolome analysis. The eight upstream oxidosqualene cyclases (OSCs) involved in triterpenoid saponin biosynthesis were functionally characterized, among them CpalOSC6 catalyzed 2,3;22,23-dioxidosqualene to form 3-epicabraleadiol; CpalOSC8 cyclized 2,3-oxidosqualene to generate dammarenediol-II; CpalOSC2 and CpalOSC3 produced ß-amyrin and CpalOSC4 produced cycloartenol, while CpalOSC2-CpalOSC5, CpalOSC7, and CpalOSC8 all produced lanosterol. However, no catalytic product was detected for CpalOSC1. Moreover, two downstream flavonoid uridine diphosphate (UDP)-glycosyltransferases (UGTs) (CpalUGT015 and CpalUGT100) that catalyze the last step of flavonoid glycoside biosynthesis were functionally elucidated. These results uncovered the key genes involved in the biosynthesis of triterpenoid saponins and flavonoid glycosides in C. paliurus that could be applied to produce flavonoid glycosides and key triterpenoid saponins in the future via a synthetic strategy.


Asunto(s)
Saponinas , Escualeno/análogos & derivados , Triterpenos , Glicósidos , Flavonoides , Saponinas/genética , Glicosiltransferasas , Uridina Difosfato
5.
Biochemistry (Mosc) ; 87(9): 957-964, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36180997

RESUMEN

Toll-like receptor 4 (TLR4) is a key pattern recognition receptor that can be activated by bacterial lipopolysaccharide to elicit inflammatory response. Proper activation of TLR4 is critical for the host defense against microbial infections. Since overactivation of TLR4 causes deleterious effects and inflammatory diseases, its activation needs to be tightly controlled by negative regulatory mechanisms, among which the most pivotal could be deubiquitination of key signaling molecules mediated by deubiquitinating enzymes (DUBs). CYLD is a member of the USP family of DUBs that acts as a critical negative regulator of TLR4-depedent inflammatory responses by deconjugating polyubiquitin chains from signaling molecules, such as TRAF6 and TAK1. Dysregulation of CYLD is implicated in inflammatory diseases. However, how the function of CYLD is regulated during inflammatory response remains largely unclear. Recently, we and other authors have shown that Spata2 functions as an important CYLD partner to regulate enzymatic activity of CYLD and substrate binding by this protein. Here, we show that a Spata2-like protein, Spata2L, can also form a complex with CYLD to inhibit the TLR4-dependent inflammatory response. We found that Spata2L constitutively interacts with CYLD and that the deficiency of Spata2L enhances the LPS-induced NF-κB activation and proinflammatory cytokine gene expression. Mechanistically, Spata2L potentiated CYLD-mediated deubiquitination of TRAF6 and TAK1 likely by promoting CYLD enzymatic activity. These findings identify Spata2L as a novel CYLD regulator, provide new insights into regulatory mechanisms underlying CYLD role in TLR4 signaling, and suggest potential targets for modulating TLR4-induced inflammation.


Asunto(s)
Factor 6 Asociado a Receptor de TNF , Receptor Toll-Like 4 , Citocinas/metabolismo , Enzima Desubiquitinante CYLD/genética , Enzima Desubiquitinante CYLD/metabolismo , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Poliubiquitina/metabolismo , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Receptor Toll-Like 4/metabolismo
6.
J Exp Biol ; 224(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34477872

RESUMEN

Neuropeptides in the SALMFamide family serve as muscle relaxants in echinoderms and may affect locomotion, as the motor behavior in sea cucumbers involves alternating contraction and extension of the body wall, which is under the control of longitudinal muscle. We evaluated the effect of an L-type SALMFamide neuropeptide (LSA) on locomotory performance of Apostichopus japonicus. We also investigated the metabolites of longitudinal muscle tissue using ultra performance liquid chromatography and quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) to assess the potential physiological mechanisms underlying the effect of LSA. The hourly distance, cumulative duration and number of steps moved significantly increased in sea cucumbers in the fourth hour after injection with LSA. Also, the treatment enhanced the mean and maximum velocity by 9.8% and 17.8%, respectively, and increased the average stride by 12.4%. Levels of 27 metabolites in longitudinal muscle changed after LSA administration, and the increased concentration of pantothenic acid, arachidonic acid and lysophosphatidylethanolamine, and the altered phosphatidylethanolamine/phosphatidylcholine ratio are potential physiological mechanisms that could explain the observed effect of LSA on locomotor behavior in A. japonicus.


Asunto(s)
Neuropéptidos , Pepinos de Mar , Stichopus , Secuencia de Aminoácidos , Animales , Locomoción , Músculos
7.
Bioorg Chem ; 88: 102940, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31028991

RESUMEN

A series of imidazo[4,5f][1,10]phenanthroline derivatives (1-6) have been synthesized in this study, and their inhibitory activity was evaluated by MTT assay. Results showed that all of these compounds demonstrate a promising inhibitory activity against a panel of human cancer cell lines. The 6, the most effective compound with IC50 of approximately 2.3 ±â€¯0.1 µM, was against the growth and could induce autophagy of HepG2 cells. This condition was confirmed by abundant autophagic vacuoles appearing in cells and evident ultrastructural changes observed under transmission electron microscopy. The autophage induced by 6 has also been demonstrated by up-regulating LC3-II and Beclin1. The apoptosis and G2/M phase cell cycle arrest through DSB damage have also been confirmed after the HepG2 cells were treated by 6. These multiple effects, especially induction apoptosis and autophagy, indicate the potential of 6 for development as a novel anticancer drug.


Asunto(s)
Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , ADN de Neoplasias/efectos de los fármacos , Imidazoles/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Fenantrolinas/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Imidazoles/síntesis química , Imidazoles/química , Neoplasias Hepáticas/patología , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Neoplasias Hepáticas Experimentales/patología , Fenantrolinas/síntesis química , Fenantrolinas/química , Células Tumorales Cultivadas , Pez Cebra
8.
Fish Shellfish Immunol ; 80: 582-591, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29920383

RESUMEN

A chemotherapeutic drug exerts favorable antitumor activity and simultaneously exhibits expectable inhibition on wound healing process. Phenanthroimidazole derivatives possess potent anticancer activity. However, only a few studies focused on the discovery of its potential effects on promoting tissue regeneration. In this study, four novel phenanthroimidazole derivatives were synthesized and characterized, and they exhibited evident inhibition on different tumor cells; compound 3 is the most active one. Moreover, 3 can promote wound healing of zebrafish in a dose-dependent manner. Further study demonstrated that 3 promoted the recruitment of inflammatory cells, formation of angiogenesis, and generation of reactive oxygen species and also influenced the motor behavior of zebrafish. Results indicated that 3 can accelerate the occurrence of pro-inflammation, angiogenesis, oxidative stress, and innervation, which play key roles in the facilitation of wound healing. Therefore, 3 can act as a bifunctional drug in inhibiting tumor and promoting tissue regeneration.


Asunto(s)
Aletas de Animales/efectos de los fármacos , Antineoplásicos/farmacología , Imidazoles/farmacología , Regeneración/efectos de los fármacos , Aletas de Animales/fisiología , Animales , Animales Modificados Genéticamente , Antineoplásicos/toxicidad , Conducta Animal/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Embrión no Mamífero/irrigación sanguínea , Embrión no Mamífero/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Humanos , Imidazoles/toxicidad , Inflamación/inmunología , Larva/efectos de los fármacos , Larva/inmunología , Locomoción/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Especies Reactivas de Oxígeno/inmunología , Cicatrización de Heridas/efectos de los fármacos , Pez Cebra/genética
9.
Microcirculation ; 21(7): 615-27, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24702968

RESUMEN

OBJECTIVE: TSI is a new drug derived from Chinese medicine for treatment of ischemic stroke in China. The aim of this study was to verify the therapeutic effect of TSI in a rat model of MCAO, and further explore the mechanism for its effect. METHODS: Male Sprague-Dawley rats were subjected to right MCAO for 60 minutes followed by reperfusion. TSI (1.67 mg/kg) was administrated before reperfusion via femoral vein injection. Twenty-four hours after reperfusion, the fluorescence intensity of DHR 123 in, leukocyte adhesion to and albumin leakage from the cerebral venules were observed. Neurological scores, TTC staining, brain water content, Nissl staining, TUNEL staining, and MDA content were assessed. Bcl-2/Bax, cleaved caspase-3, NADPH oxidase subunits p47(phox)/p67(phox)/gp91(phox), and AMPK/Akt/PKC were analyzed by Western blot. RESULTS: TSI attenuated I/R-induced microcirculatory disturbance and neuron damage, activated AMPK, inhibited NADPH oxidase subunits membrane translocation, suppressed Akt phosphorylation, and PKC translocation. CONCLUSIONS: TSI attenuates I/R-induced brain injury in rats, supporting its clinic use for treatment of acute ischemic stroke. The role of TSI may benefit from its antioxidant activity, which is most likely implemented via inactivation of NADPH oxidase through a signaling pathway implicating AMPK/Akt/PKC.


Asunto(s)
Alquenos/uso terapéutico , Medicamentos Herbarios Chinos/uso terapéutico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Microcirculación/efectos de los fármacos , NADPH Oxidasas/fisiología , Neuronas/efectos de los fármacos , Polifenoles/uso terapéutico , Daño por Reperfusión/tratamiento farmacológico , Proteínas Quinasas Activadas por AMP/fisiología , Alquenos/farmacología , Animales , Apoptosis/efectos de los fármacos , Permeabilidad Capilar/efectos de los fármacos , Infarto Cerebral/etiología , Infarto Cerebral/patología , Infarto Cerebral/prevención & control , Medicamentos Herbarios Chinos/farmacología , Infarto de la Arteria Cerebral Media/enzimología , Infarto de la Arteria Cerebral Media/fisiopatología , Leucocitos/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Masculino , Trastornos del Movimiento/etiología , Trastornos del Movimiento/prevención & control , Proteínas del Tejido Nervioso/fisiología , Neuronas/enzimología , Fosforilación/efectos de los fármacos , Polifenoles/farmacología , Proteína Quinasa C/fisiología , Transporte de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/fisiología , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/enzimología , Daño por Reperfusión/fisiopatología , Transducción de Señal/efectos de los fármacos
10.
Front Plant Sci ; 15: 1412574, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895611

RESUMEN

The transcription factors of WRKY genes play essential roles in plant growth, stress responses, and metabolite biosynthesis. Erigeron breviscapus, a traditional Chinese herb, is abundant in flavonoids and has been used for centuries to treat cardiovascular and cerebrovascular diseases. However, the WRKY transcription factors that regulate flavonoid biosynthesis in E. breviscapus remain unknown. In this study, a total of 75 EbWRKY transcription factors were predicted through comprehensive genome-wide characterization of E. breviscapus and the chromosomal localization of each EbWRKY gene was investigated. RNA sequencing revealed transient responses of 74 predicted EbWRKY genes to exogenous abscisic acid (ABA), salicylic acid (SA), and gibberellin 3 (GA3) after 4 h of treatment. In contrast, the expression of key structural genes involved in flavonoid biosynthesis increased after 4 h in GA3 treatment. However, the content of flavonoid metabolites in leaves significantly increased at 12 h. The qRT-PCR results showed that the expression patterns of EbWRKY11, EbWRKY30, EbWRKY31, EbWRKY36, and EbWRKY44 transcription factors exhibited a high degree of similarity to the 11 structural genes involved in flavonoid biosynthesis. Protein-DNA interactions were performed between the key genes involved in scutellarin biosynthesis and candidate WRKYs. The result showed that F7GAT interacts with EbWRKY11, EbWRKY36, and EbWRKY44, while EbF6H has a self-activation function. This study provides comprehensive information on the regulatory control network of flavonoid accumulation mechanisms, offering valuable insights for breeding E. breviscapus varieties with enhanced scutellarin content.

11.
Biology (Basel) ; 12(2)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36829488

RESUMEN

Parental nutrient reserves are directly related to reproductive performance in sea cucumbers. This study focused on the lipid requirements of male and female sea cucumbers Apostichopus japonicus during the reproductive stage and analyzed their physiological responses to a high-fat diet (HFD). The intestinal lipid metabolites and microbiome profile changed significantly in animals fed with the HFD, as given by an upregulation of metabolites related to lipid metabolism and an increase in the predominance of Proteobacteria in the microbiome, respectively. The metabolic responses of male and female sea cucumbers to the HFD differed, which in turn could have triggered sex-related differences in the intestinal microbiome. These results suggest that the lipid content in diets can be differentially adjusted for male and female sea cucumbers to improve nutrition and promote reproduction. This data contributes to a better understanding of the reproductive biology and sex differences of sea cucumbers.

12.
Front Plant Sci ; 14: 1259347, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38239219

RESUMEN

Bergenin is a typical carbon glycoside and the primary active ingredient in antitussive drugs widely prescribed for central cough inhibition in China. The bergenin extraction industry relies on the medicinal plant species Bergenia purpurascens and Ardisia japonica as their resources. However, the bergenin biosynthetic pathway in plants remains elusive. In this study, we functionally characterized a shikimate dehydrogenase (SDH), two O-methyltransferases (OMTs), and a C-glycosyltransferase (CGT) involved in bergenin synthesis through bioinformatics analysis, heterologous expression, and enzymatic characterization. We found that BpSDH2 catalyzes the two-step dehydrogenation process of shikimic acid to form gallic acid (GA). BpOMT1 and AjOMT1 facilitate the methylation reaction at the 4-OH position of GA, resulting in the formation of 4-O-methyl gallic acid (4-O-Me-GA). AjCGT1 transfers a glucose moiety to C-2 to generate 2-Glucosyl-4-O-methyl gallic acid (2-Glucosyl-4-O-Me-GA). Bergenin production ultimately occurs in acidic conditions or via dehydration catalyzed by plant dehydratases following a ring-closure reaction. This study for the first time uncovered the biosynthetic pathway of bergenin, paving the way to rational production of bergenin in cell factories via synthetic biology strategies.

13.
BMC Med Genet ; 13: 61, 2012 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-22849376

RESUMEN

BACKGROUND: To explore the association of ALOX5AP single nucleotide polymorphisms (SNPs) and haplotype with the occurrence of cerebral infarction in the Han population of northern China. METHODS: Blood samples were collected from 236 patients of Han ancestry with a history of cerebral infarction and 219 healthy subjects of Han ancestry with no history of cerebral infarction or cardiovascular disease. Applied Biosystems(®) TaqMan(®) SNP Genotyping Assays for SNP genotyping were used to determine the genotypes of 7 ALOX5AP SNP alleles (rs4073259, rs4769874, rs9315050, rs9551963, rs10507391, rs9579646, and rs4147064). RESULTS: One SNP allele (A) of rs4073259 was significantly associated with development of cerebral infarction (P = 0.049). In comparison to control groups, haplotype rs9315050&rs9551963 AAAC [OR (95% CI) = 1.53 (1.02-2.29)], and genotypes rs4147064 CT [OR (95% CI) = 1.872 (1.082-3.241)], and rs9551963 AC [OR (95% CI) = 2.015 (1.165-3.484)] increased the risk of cerebral infarction in patients with hypertension. Genotype rs9579646 GG [OR (95% CI) = 2.926 (1.18-7.251)] increased the risk of, while rs4073259 GG [OR (95% CI) = 0.381 (0.157-0.922)] decreased the risk of cerebral infarction in patients with diabetes. CONCLUSION: These results suggest the ALOX5AP SNP A allele in rs4073259 and genotype rs9579646 GG, rs9551963 AC, and haplotype rs9315050 & rs9551963 AAAC were associated with an increased risk of ischemic stroke in the Han population, while rs4073259 GG was associated with a decreased risk.


Asunto(s)
Proteínas Activadoras de la 5-Lipooxigenasa/genética , Pueblo Asiatico/genética , Infarto Cerebral/genética , Adulto , Anciano , Alelos , Infarto Cerebral/complicaciones , China , Complicaciones de la Diabetes , Femenino , Frecuencia de los Genes , Genotipo , Haplotipos , Humanos , Hipertensión/complicaciones , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Polimorfismo de Nucleótido Simple , Factores de Riesgo
14.
Front Immunol ; 13: 826106, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281071

RESUMEN

Inflammasomes are multi-protein platforms that are assembled in response to microbial and danger signals to activate proinflammatory caspase-1 for production of active form of IL-1ß and induction of pyroptotic cell death. Where and how an inflammasome is assembled in cells has remained controversial. While the endoplasmic reticulum, mitochondria and Golgi apparatus have been reported to be associated with inflammasome assembly, none of these sites seems to match the morphology, number and size of activated inflammasomes that are microscopically observable as one single perinuclear micrometer-sized punctum in each cell. Recently, emerging evidence shows that NLRP3 and pyrin inflammasomes are assembled, activated and locally regulated at the centrosome, the major microtubule organizing center in mammalian cells, elegantly accounting for the singularity, size and perinuclear location of activated inflammasomes. These new exciting findings reveal the previously unappreciated importance of the centrosome in controlling inflammasome assembly and activation as well as inflammasome-related diseases.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Caspasa 1/metabolismo , Centrosoma/metabolismo , Retículo Endoplásmico/metabolismo , Inflamasomas/metabolismo , Mamíferos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
15.
Front Bioeng Biotechnol ; 10: 818572, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35174144

RESUMEN

Introduction: As the space field has developed and our population ages, people engaged in space travel and those on prolonged bed rest are at increasing risk for bone loss and fractures. Disuse osteoporosis occurs frequently in these instances, for which the currently available anti-osteoporosis agents are far from satisfactory and have undesirable side effects. CEFFE is a cell-free fraction isolated from nanofat that is enriched with a variety of growth factors, and we aim to investigate its potential therapeutic effects on disuse osteoporosis. Methods: A tail suspension-induced osteoporosis model was applied in this study. Three weeks after tail suspension, CEFFE was intraperitoneally injected, and PBS was used as a control. The trabecular and cortical bone microstructures of the tibia in each group were assessed by µCT after 4 weeks of administration. Osteocyte lacunar-canalicularity was observed by HE and silver staining. In vitro, MLO-Y4 cell apoptosis was induced by reactive oxygen species (ROSUP). TUNEL staining and flow cytometry were used to detect apoptosis. CCK-8 was used to detect cell proliferation, and Western blotting was used to detect MAPK signaling pathway changes. Results: CEFFE increased the bone volume (BV/TV) and trabecular number (Tb.N) of the trabecular bone and increased the thickness of the cortical bone. HE and silver staining results showed that CEFFE reduced the number of empty lacunae and improved the lacuna-canalicular structure. CEFFE promoted osteocyte proliferative capacity in a dose-dependent manner. CEFFE protected MLO-Y4 from apoptosis by activating the serine/threonine-selective protein kinase (ERK) signaling pathways. Conclusion: CEFFE attenuated immobilization-induced bone loss by decreasing osteocyte apoptosis. CEFFE increased the survival of osteocytes and inhibited osteocyte apoptosis by activating the ERK signaling pathway in vitro.

16.
Front Plant Sci ; 13: 984422, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186029

RESUMEN

Phylogeographic, population genetics and diversity analysis are crucial for local tea resource conservation and breeding programs. Lincang in Yunnan has been known as the possible place of domestication for tea worldwide, yet, its genetic makeup and unique Lincang origin are little understood. Here, we reported a large-scale whole-genome resequencing based population genomic analysis in eight main tea-producing areas of Lincang in Yunnan (1,350 accessions), and the first comprehensive map of tea genome variation in Lincang was constructed. Based on the population structure, tea sample in Lincang was divided into three subgroups, and inferred Xigui and Nahan Tea Mountain in Linxiang, Baiying Mountain Ancient Tea Garden in Yun, and Jinxiu Village of Xiaowan Town in Fengqing, which belong to the birthplace of the three subgroups, were all likely to be the origin center of Lincang tea. Meanwhile, the history population sizes analysis show that similar evolutionary patterns were observed for the three subgroups of Lincang. It also was observed that the hybrid among eight areas of Lincang was noticeable, resulting in insignificant genetic differentiation between geographical populations and low genetic diversity. The findings of this study clarified the genetic make-up and evolutionary traits of the local population of tea, which gave some insight into the development of Lincang tea.

17.
Front Plant Sci ; 13: 852377, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401630

RESUMEN

Gynostemma longipes contains an abundance of dammarane-type ginsenosides and gypenosides that exhibit extensive pharmacological activities. Increasing attention has been paid to the elucidation of cytochrome P450 monooxygenases (CYPs) and UDP-dependent glycosyltransferases (UGTs) that participate downstream of ginsenoside biosynthesis in the Panax genus. However, information on oxidosqualene cyclases (OSCs), the upstream genes responsible for the biosynthesis of different skeletons of ginsenoside and gypenosides, is rarely reported. Here, an integrative study of the metabolome and the transcriptome in the leaf, stolon, and rattan was conducted and the function of GlOSC1 was demonstrated. In total, 46 triterpenes were detected and found to be highly abundant in the stolon, whereas gene expression analysis indicated that the upstream OSC genes responsible for saponin skeleton biosynthesis were highly expressed in the leaf. These findings indicated that the saponin skeletons were mainly biosynthesized in the leaf by OSCs, and subsequently transferred to the stolon via CYPs and UGTs biosynthesis to form various ginsenoside and gypenosides. Additionally, a new dammarane-II synthase (DDS), GlOSC1, was identified by bioinformatics analysis, yeast expression assay, and enzyme assays. The results of the liquid chromatography-mass spectrometry (LC-MS) analysis proved that GlOSC1 could catalyze 2,3-oxidosqualene to form dammarenediol-II via cyclization. This work uncovered the biosynthetic mechanism of dammarenediol-II, an important starting substrate for ginsenoside and gypenosides biosynthesis, and may achieve the increased yield of valuable ginsenosides and gypenosides produced under excess substrate in a yeast cell factory through synthetic biology strategy.

18.
Eur J Mass Spectrom (Chichester) ; 17(2): 187-95, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21719918

RESUMEN

Several amino acid phosphorodiamidate derivatives of d4T as anti-HIV prodrugs were synthesized and investigated using electrospray ionization multistage tandem mass spectrometry (ESI-MS(n)). A novel methyl group migration in gas phase was observed in ESI-MS(2) of the sodium adducts of amino acid methyl ester of phosphorodiamidates of 2',3'-didehydro-2',3'-dideoxythymidine (d4T). The proposed structures of the rearrangement ions were confirmed by high resolution tandem mass spectrometry. A possible mechanism involving the pentacoordinate phosphoric-carboxylic phosphate anhydride was proposed, in which a seven-membered ring intermediate was formed by coordination with the metal ion between the phosphoryl group and carbonyl oxygen atom. Thus, the intrinsic properties of phosphoryl group might be the key factors responsible for this migration.


Asunto(s)
Aminoácidos/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Estavudina/química , Espectrometría de Masas en Tándem/métodos , Zidovudina/química , Fármacos Anti-VIH/química , Compuestos de Fósforo/química
19.
Neurol India ; 59(4): 521-6, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21891926

RESUMEN

BACKGROUND AND OBJECTIVES: Evidence from experimental and genetic studies suggest the existence of a potential link between the polymorphisms of human leukocyte antigen class II gene (HLA-DR) and ischemic stroke. This study addressed the association of HLA-DR gene with atherosclerotic cerebral infarction (ACI) in a North Chinese Han population. MATERIAL AND METHODS: The genotyping of HLA-DRB1 was determined by standard techniques based on polymerase chain reaction and sequence-specific oligonucleotides hybridization in a gene chip. RESULTS: The relative risk (RR) of HLA-DRB1 FNx01 04 and HLA-DRB1 FNx01 03 (17) in patients with ACI and their first-degree relatives were significantly higher than those in the control group (RR=2.56 and 18.77, respectively; P <0.05). In contrast, the RR of HLA-DRB1 FNx01 12 was dramatically reduced in patients with ACI in relation to healthy controls (RR=0.17; P <0.01). CONCLUSIONS: These data indicate that the polymorphisms in HLA-DRB1 may influence the risk of ACI in the North Han population of China. Further studies are necessary to validate the observation in larger samples.


Asunto(s)
Pueblo Asiatico/genética , Infarto Encefálico/genética , Predisposición Genética a la Enfermedad , Antígenos HLA-DR/genética , Arteriosclerosis Intracraneal/genética , Adulto , Infarto Encefálico/complicaciones , China/etnología , Salud de la Familia , Femenino , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Genotipo , Cadenas HLA-DRB1 , Humanos , Arteriosclerosis Intracraneal/complicaciones , Masculino , Persona de Mediana Edad , Adulto Joven
20.
Artículo en Inglés | MEDLINE | ID: mdl-33486324

RESUMEN

Gender differences in physiological characteristics are widespread in animals. Herein, differentially expressed genes (DEGs) in gonads of the sea cucumber Apostichopus japonicus were analysed by transcriptomics, and the results showed that 19,973 genes were commonly expressed in the males and females, 4186 were female-biased, and 2540 were male-biased, 4695 genes were up-regulated in the females and 3436 genes were up-regulated in the males. These DEGs were mainly associated with metabolism, including lipid metabolism, amino acid metabolism, nucleotide metabolism, energy metabolism, and cofactor and vitamin metabolism. 29 Cytochrome P450 (CYP) superfamily genes with gender differential expression were selected, and performed gene identification, phylogenetic, and functional analyses. The results indicated significant roles in multiple metabolic pathways, such as steroid hormone biosynthesis, ovarian steroidogenesis, cortisol synthesis and secretion, arachidonic acid metabolism, linoleic acid metabolism, and retinol metabolism. The findings provide insight into the molecular characteristics of physiological gender differences in sea cucumbers, and will help lay the foundation for the establishment of effective sea cucumber breeding technologies.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Pepinos de Mar/genética , Animales , Femenino , Masculino , Caracteres Sexuales , Transcriptoma , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA