Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Immunol ; 208(6): 1424-1433, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35197329

RESUMEN

NF-erythroid 2-related factor 2 (Nrf2) is a major transcription factor to protect cells against reactive oxygen species (ROS) and reactive toxicants. Meanwhile, Nrf2 can inhibit contact dermatitis through redox-dependent and -independent pathways. However, the underlying mechanisms of how Nrf2 mediates irritant contact dermatitis (ICD) are still unclear. In this article, we elucidated the role of Nrf2 in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced acute ICD. Our study demonstrated that the ear thickness, redness, swelling, and neutrophil infiltration were significantly increased, accompanied by increased expression of inflammatory cytokines (IL-1α, IL-1ß, IL-6, etc.) and decreased expression of antioxidant genes (HO-1 and NQO1) in Nrf2 knockout mice. Moreover, ERK phosphorylation was elevated in mouse embryonic fibroblasts (MEFs) from Nrf2 knockout mouse. Inhibition of ERK significantly alleviated TPA-induced cutaneous inflammation and ROS accumulation in MEFs derived from mouse. Conversely, ROS scavenging inhibited the ERK activation and TPA-induced inflammation in MEFs. Taken together, the findings illustrate the key role of the Nrf2/ROS/ERK signaling pathway in TPA-induced acute ICD.


Asunto(s)
Dermatitis por Contacto , Factor 2 Relacionado con NF-E2 , Animales , Ratones , Fibroblastos/metabolismo , Hemo-Oxigenasa 1/metabolismo , Inflamación , Irritantes , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Acetato de Tetradecanoilforbol
2.
Graefes Arch Clin Exp Ophthalmol ; 262(1): 81-91, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37367995

RESUMEN

PURPOSES: This work aimed to assess the possible role of TRIM25 in regulating hyperglycemia-induced inflammation, senescence, and oxidative stress in retinal microvascular endothelial cells, all of which exert critical roles in the pathological process of diabetic retinopathy. METHODS: The effects of TRIM25 were investigated using streptozotocin-induced diabetic mice, human primary retinal microvascular endothelial cells cultured in high glucose, and adenoviruses for TRIM25 knockdown and overexpression. TRIM25 expression was evaluated by western blot and immunofluorescence staining. Inflammatory cytokines were detected by western blot and quantitative real-time PCR. Cellular senescence level was assessed by detecting senescent marker p21 and senescence-associated-ß-galactosidase activity. The oxidative stress state was accessed by detecting reactive oxygen species and mitochondrial superoxide dismutase. RESULTS: TRIM25 expression is elevated in the endothelial cells of the retinal fibrovascular membrane from diabetic patients compared with that of the macular epiretinal membrane from non-diabetic patients. Moreover, we have also observed a significant increase in TRIM25 expression in diabetic mouse retina and retinal microvascular endothelial cells under hyperglycemia. TRIM25 knockdown suppressed hyperglycemia-induced inflammation, senescence, and oxidative stress in human primary retinal microvascular endothelial cells while TRIM25 overexpression further aggregates those injuries. Further investigation revealed that TRIM25 promoted the inflammatory responses mediated by the TNF-α/NF-κB pathway and TRIM25 knockdown improved cellular senescence by increasing SIRT3. However, TRIM25 knockdown alleviated the oxidative stress independent of both SIRT3 and mitochondrial biogenesis. CONCLUSION: Our study proposed TRIM25 as a potential therapeutic target for the protection of microvascular function during the progression of diabetic retinopathy.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Hiperglucemia , Sirtuina 3 , Animales , Humanos , Ratones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Retinopatía Diabética/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Hiperglucemia/metabolismo , Hiperglucemia/patología , Inflamación/metabolismo , Estrés Oxidativo , Retina/patología , Sirtuina 3/metabolismo , Sirtuina 3/farmacología , Factores de Transcripción , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/farmacología
3.
Eur J Nutr ; 62(7): 2873-2890, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37392244

RESUMEN

BACKGROUND AND AIMS: Amino acids (AAs) not only constitute milk protein but also stimulate milk synthesis through the activation of mTORC1 signaling, but which amino acids that have the greatest impact on milk fat and protein synthesis is still very limited. In this study, we aimed to identify the most critical AAs involved in the regulation of milk synthesis and clarify how these AAs regulate milk synthesis through the G-protein-coupled receptors (GPCRs) signaling pathway. METHODS: In this study, a mouse mammary epithelial cell line (HC11) and porcine mammary epithelial cells (PMECs) were selected as study subjects. After treatment with different AAs, the amount of milk protein and milk fat synthesis were detected. Activation of mTORC1 and GPCRs signaling induced by AAs was also investigated. RESULTS: In this study, we demonstrate that essential amino acids (EAAs) are crucial to promote lactation by increasing the expression of genes and proteins related to milk synthesis, such as ACACA, FABP4, DGAT1, SREBP1, α-casein, ß-casein, and WAP in HC11 cells and PMECs. In addition to activating mTORC1, EAAs uniquely regulate the expression of calcium-sensing receptor (CaSR) among all amino-acid-responsive GPCRs, which indicates a potential link between CaSR and the mTORC1 pathway in mammary gland epithelial cells. Compared with other EAAs, leucine and arginine had the greatest capacity to trigger GPCRs (p-ERK) and mTORC1 (p-S6K1) signaling in HC11 cells. In addition, CaSR and its downstream G proteins Gi, Gq, and Gßγ are involved in the regulation of leucine- and arginine-induced milk synthesis and mTORC1 activation. Taken together, our data suggest that leucine and arginine can efficiently trigger milk synthesis through the CaSR/Gi/mTORC1 and CaSR/Gq/mTORC1 pathways. CONCLUSION: We found that the G-protein-coupled receptor CaSR is an important amino acid sensor in mammary epithelial cells. Leucine and arginine promote milk synthesis partially through the CaSR/Gi/mTORC1 and CaSR/Gq/mTORC1 signaling systems in mammary gland epithelial cells. Although this mechanism needs further verification, it is foreseeable that this mechanism may provide new insights into the regulation of milk synthesis.


Asunto(s)
Proteínas de la Leche , Receptores Sensibles al Calcio , Ratones , Femenino , Animales , Porcinos , Leucina/farmacología , Leucina/metabolismo , Receptores Sensibles al Calcio/genética , Receptores Sensibles al Calcio/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Arginina/farmacología , Aminoácidos/metabolismo , Caseínas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Glándulas Mamarias Animales/metabolismo , Células Epiteliales/metabolismo
4.
Int J Mol Sci ; 24(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37240046

RESUMEN

The purple tomato variety 'Indigo Rose' (InR) is favored due to its bright appearance, abundant anthocyanins and outstanding antioxidant capacity. SlHY5 is associated with anthocyanin biosynthesis in 'Indigo Rose' plants. However, residual anthocyanins still present in Slhy5 seedlings and fruit peel indicated there was an anthocyanin induction pathway that is independent of HY5 in plants. The molecular mechanism of anthocyanins formation in 'Indigo Rose' and Slhy5 mutants is unclear. In this study, we performed omics analysis to clarify the regulatory network underlying anthocyanin biosynthesis in seedling and fruit peel of 'Indigo Rose' and Slhy5 mutant. Results showed that the total amount of anthocyanins in both seedling and fruit of InR was significantly higher than those in the Slhy5 mutant, and most genes associated with anthocyanin biosynthesis exhibited higher expression levels in InR, suggesting that SlHY5 play pivotal roles in flavonoid biosynthesis both in tomato seedlings and fruit. Yeast two-hybrid (Y2H) results revealed that SlBBX24 physically interacts with SlAN2-like and SlAN2, while SlWRKY44 could interact with SlAN11 protein. Unexpectedly, both SlPIF1 and SlPIF3 were found to interact with SlBBX24, SlAN1 and SlJAF13 by yeast two-hybrid assay. Suppression of SlBBX24 by virus-induced gene silencing (VIGS) retarded the purple coloration of the fruit peel, indicating an important role of SlBBX24 in the regulation of anthocyanin accumulation. These results deepen the understanding of purple color formation in tomato seedlings and fruits in an HY5-dependent or independent manner via excavating the genes involved in anthocyanin biosynthesis based on omics analysis.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Antocianinas/metabolismo , Plantones/genética , Plantones/metabolismo , Frutas/genética , Frutas/metabolismo , Carmin de Índigo/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
J Environ Sci (China) ; 126: 138-152, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36503743

RESUMEN

The OsLCD gene, which has been implicated in cadmium (Cd) accumulation in rice, might be a useful target for CRISPR/Cas9 editing. However, the effects of OsLCD gene editing on Cd accumulation, plant growth, and yield traits remain unknown. Here, we used CRISPR/Cas9 to generate oslcd single mutants from indica and japonica rice cultivars. We also generated osnramp5 single mutants and oslcd osnramp5 double mutants in the indica background. When grown in Cd-contaminated paddy soils, all oslcd single mutants accumulated less Cd than the wild types (WTs). Consistent with this, oslcd single mutants grown in Cd-contaminated hydroponic culture accumulated significantly less Cd in the shoots as compared to WTs. This decrease in accumulation probably resulted from the reduction of Cd translocation under Cd stress. Oxidative damage also decreased, and plant growth increased in all oslcd single mutant seedlings as compared to WTs in the presence of Cd. Plant growth and most yield traits, as well essential element concentrations in rice seedling shoots, brown rice, and rice straw, were similar between oslcd single mutants and WTs. In the presence of Cd, Cd concentrations in the brown rice and shoots of oslcd osnramp5 double mutants were significantly decreased compared with WTs as well as osnramp single mutants. Our results suggested that OsLCD knockout may reduce Cd accumulation alone or in combination with other knockout mutations in a variety of rice genotypes; unlike OsNramp5 mutations, OsLCD knockout did not reduce essential element contents. Therefore, OsLCD knockout might be used to generate low-Cd rice germplasms.


Asunto(s)
Cadmio , Oryza , Cadmio/toxicidad , Oryza/genética , Sistemas CRISPR-Cas , Plantones , Hidroponía
6.
J Environ Sci (China) ; 115: 294-307, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34969457

RESUMEN

Silicon (Si) has been shown to alleviate Cd stress in rice. Here, we investigated the beneficial effects of foliar Si in an indica rice Huanghuazhan (HHZ). Our results showed that foliar Si increases the dry weight and decreases Cd translocation in Cd-exposed rice at the grain-filling stage only, implying that the filling stage is critical for foliar Si to reduce Cd accumulation. We also investigated the transcriptomics in flag leaves (FLs), spikelets (SPs), and node Is (NIs) of Cd-exposed HHZ after foliar Si application at the filling stage. Importantly, the gene expression profiles associated with the Si-mediated alleviation of Cd stress were tissue specific, while shared pathways were mediated by Si in Cd-exposed rice tissues. Furthermore, after the Si treatment of Cd-exposed rice, the ATP-binding cassette (ABC)-transporters were mostly upregulated in FL and SP, while the bivalent cation transporters were mostly downregulated in FL and NI, possibly helping to reduce Cd accumulation. The genes associated with essential nutrient transporters, carbohydrate and secondary metabolite biosynthesis, and cytochrome oxidase activity were mostly upregulated in Cd-exposed FL and SP, which may help to alleviate oxidative stress and improve plant growth under Cd exposure. Interestingly, genes responsible for signal transduction were negatively regulated in FL, but positively regulated in SP, by foliar Si. Our results provide transcriptomic evidence that foliar Si plays an active role in alleviating the effects of Cd exposure in rice. In particular, foliar Si may alter the expression pattern of genes associated with transport, biosynthesis and metabolism, and oxidation reduction.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , Cadmio/toxicidad , Oryza/genética , Silicio , Contaminantes del Suelo/análisis , Transcriptoma
7.
J Environ Sci (China) ; 109: 88-101, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34607677

RESUMEN

The inessential heavy metal/loids cadmium (Cd) and arsenic (As), which often co-occur in polluted paddy soils, are toxic to rice. Silicon (Si) treatment is known to reduce Cd and As toxicity in rice plants. To better understand the shared mechanisms by which Si alleviates Cd and As stress, rice seedlings were hydroponically exposed to Cd or As, then treated with Si. The addition of Si significantly ameliorated the inhibitory effects of Cd and As on rice seedling growth. Si supplementation decreased Cd and As translocation from roots to shoots, and significantly reduced Cd- and As-induced reactive oxygen species generation in rice seedlings. Transcriptomics analyses were conducted to elucidate molecular mechanisms underlying the Si-mediated response to Cd or As stress in rice. The expression patterns of the differentially expressed genes in Cd- or As-stressed rice roots with and without Si application were compared. The transcriptomes of the Cd- and As-stressed rice roots were similarly and profoundly reshaped by Si application, suggesting that Si may play a fundamental, active role in plant defense against heavy metal/loid stresses by modulating whole genome expression. We also identified two novel genes, Os01g0524500 and Os06g0514800, encoding a myeloblastosis (MYB) transcription factor and a thionin, respectively, which may be candidate targets for Si to alleviate Cd and As stress in rice, as well as for the generation of Cd- and/or As-resistant plants. This study provides valuable resources for further clarification of the shared molecular mechanisms underlying the Si-mediated alleviation of Cd and As toxicity in rice.


Asunto(s)
Arsénico , Oryza , Contaminantes del Suelo , Arsénico/toxicidad , Cadmio/toxicidad , Oryza/genética , Raíces de Plantas , Plantones/genética , Silicio/toxicidad , Contaminantes del Suelo/toxicidad , Transcriptoma
8.
Comput Methods Programs Biomed ; 250: 108178, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38652995

RESUMEN

BACKGROUND AND OBJECTIVE: Gland segmentation of pathological images is an essential but challenging step for adenocarcinoma diagnosis. Although deep learning methods have recently made tremendous progress in gland segmentation, they have not given satisfactory boundary and region segmentation results of adjacent glands. These glands usually have a large difference in glandular appearance, and the statistical distribution between the training and test sets in deep learning is inconsistent. These problems make networks not generalize well in the test dataset, bringing difficulties to gland segmentation and early cancer diagnosis. METHODS: To address these problems, we propose a Variational Energy Network named VENet with a traditional variational energy Lv loss for gland segmentation of pathological images and early gastric cancer detection in whole slide images (WSIs). It effectively integrates the variational mathematical model and the data-adaptability of deep learning methods to balance boundary and region segmentation. Furthermore, it can effectively segment and classify glands in large-size WSIs with reliable nucleus width and nucleus-to-cytoplasm ratio features. RESULTS: The VENet was evaluated on the 2015 MICCAI Gland Segmentation challenge (GlaS) dataset, the Colorectal Adenocarcinoma Glands (CRAG) dataset, and the self-collected Nanfang Hospital dataset. Compared with state-of-the-art methods, our method achieved excellent performance for GlaS Test A (object dice 0.9562, object F1 0.9271, object Hausdorff distance 73.13), GlaS Test B (object dice 94.95, object F1 95.60, object Hausdorff distance 59.63), and CRAG (object dice 95.08, object F1 92.94, object Hausdorff distance 28.01). For the Nanfang Hospital dataset, our method achieved a kappa of 0.78, an accuracy of 0.9, a sensitivity of 0.98, and a specificity of 0.80 on the classification task of test 69 WSIs. CONCLUSIONS: The experimental results show that the proposed model accurately predicts boundaries and outperforms state-of-the-art methods. It can be applied to the early diagnosis of gastric cancer by detecting regions of high-grade gastric intraepithelial neoplasia in WSI, which can assist pathologists in analyzing large WSI and making accurate diagnostic decisions.


Asunto(s)
Aprendizaje Profundo , Detección Precoz del Cáncer , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico por imagen , Neoplasias Gástricas/patología , Detección Precoz del Cáncer/métodos , Adenocarcinoma/diagnóstico por imagen , Adenocarcinoma/patología , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Interpretación de Imagen Asistida por Computador/métodos
9.
IEEE Trans Biomed Eng ; 71(4): 1332-1344, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37983148

RESUMEN

OBJECTIVE: In this paper, a novel extended form of multivariate variational mode decomposition (MVMD) method to multigroup data named as grouped MVMD (GMVMD) is proposed. GMVMD is distinct from MVMD as it extracts common frequencies with strong correlations among regional channels. METHODS: Firstly, GMVMD utilizes a new clustering algorithm named as frequencies grouping algorithm to classify the nearest common frequencies among all channels to specified groups. Secondly, a generic variational optimization model which is extended from MVMD is formulated. Thirdly, alternating direction method of multipliers (ADMM) is utilized to obtain optimal solution of GMVMD model. RESULTS: The proposed method introduces an extra parameter to decide the number of clusterings which need to be specified by the user. The effectiveness and superiority of the algorithm are demonstrated on a series of experiments. The utility of GMVMD is verified by grouping real-world electroencephalogram (EEG) data having similar center frequencies successfully. CONCLUSION: GMVMD outperforms MVMD in mode-alignment, signal reduction error and et al. Significance: GMVMD can obtain more accurate center frequencies and less signal reduction error than MVMD.


Asunto(s)
Algoritmos , Electroencefalografía , Análisis por Conglomerados
10.
Cell Death Differ ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080375

RESUMEN

Progressive dysfunction of the retinal pigment epithelium (RPE) and the adjacent photoreceptor cells in the outer retina plays a pivotal role in the pathogenesis of diabetic retinopathy (DR). Here, we observed a marked increase in oxidative stress-induced apoptosis in parallel with higher expression of telomeric protein TIN2 in RPE cells under hyperglycemia in vivo and in vitro. Delving deeper, we confirm that high glucose-induced elevation of mitochondria-localized TIN2 compromises mitochondrial activity and weakens the intrinsic antioxidant defense, thereby leading to the activation of mitochondria-dependent apoptotic pathways. Mechanistically, mitochondrial TIN2 promotes the phosphorylation of FOXO1 and its relocation to the mitochondria. Such translocation of transcription factor FOXO1 not only promotes its binding to the D-loop region of mitochondrial DNA-resulting in the inhibition of mitochondrial respiration-but also hampers its availability to nuclear target DNA, thereby undermining the intrinsic antioxidant defense. Moreover, TIN2 knockdown effectively mitigates oxidative-induced apoptosis in diabetic mouse RPE by preserving mitochondrial homeostasis, which concurrently prevents secondary photoreceptor damage. Our study proposes the potential of TIN2 as a promising molecular target for therapeutic interventions for diabetic retinopathy, which emphasizes the potential significance of telomeric proteins in the regulation of metabolism and mitochondrial function. Created with BioRender ( https://www.biorender.com/ ).

11.
Cell Biosci ; 14(1): 21, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341583

RESUMEN

BACKGROUND: Neovascular eye disease is characterized by pathological neovascularization, with clinical manifestations such as intraocular exudation, bleeding, and scar formation, ultimately leading to blindness in millions of individuals worldwide. Pathologic ocular angiogenesis often occurs in common fundus diseases including proliferative diabetic retinopathy (PDR), age-related macular degeneration (AMD), and retinopathy of prematurity (ROP). Anti-vascular endothelial growth factor (VEGF) targets the core pathology of ocular angiogenesis. MAIN BODY: In recent years, therapies targeting metabolism to prevent angiogenesis have also rapidly developed, offering assistance to patients with a poor prognosis while receiving anti-VEGF therapy and reducing the side effects associated with long-term VEGF usage. Phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a key enzyme in targeted metabolism, has been shown to have great potential, with antiangiogenic effects and multiple protective effects in the treatment of neovascular eye disease. In this review, we summarize the mechanisms of common types of neovascular eye diseases; discuss the protective effect and potential mechanism of targeting PFKFB3, including the related inhibitors of PFKFB3; and look forward to the future exploration directions and therapeutic prospects of PFKFB3 in neovascular eye disease. CONCLUSION: Neovascular eye disease, the most common and severely debilitating retinal disease, is largely incurable, necessitating the exploration of new treatment methods. PFKFB3 has been shown to possess various potential protective mechanisms in treating neovascular eye disease. With the development of several drugs targeting PFKFB3 and their gradual entry into clinical research, targeting PFKFB3-mediated glycolysis has emerged as a promising therapeutic approach for the future of neovascular eye disease.

12.
Invest Ophthalmol Vis Sci ; 65(1): 14, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38175638

RESUMEN

Purpose: Diabetic retinopathy (DR) is one of the most common reasons for blindness. uncoupling protein 2 (UCP2), an uncoupling protein located in mitochondria, has been reported to be related to metabolic and vascular diseases. This research aimed to illustrate the function and mechanism of UCP2 in the pathogenesis of DR. Methods: Human epiretinal membranes were collected to investigate the expression of UCP2 by quantitative real-time polymerase chain reaction (qRT-PCR) and immunofluorescence. Primary human retinal microvascular endothelial cells (HRECs) were cultured in high glucose (HG) to establish an in vitro cell model for DR. Flow cytometry analysis was used to measure intracellular reactive oxygen species (ROS). Senescence levels were evaluated by the senescence-associated beta-galactosidase (SA-ß-gal) assay, the expression of senescence marker P21, and cell-cycle analysis. Adenovirus-mediated UCP2 overexpression or knockdown and specific inhibitors were administered to investigate the underlying regulatory mechanism. Results: Proliferative fibrovascular membranes from patients with DR illustrated the downregulation of UCP2 and sirtuin 3 (SIRT3) by qRT-PCR and immunofluorescence. Persistent hyperglycemia-induced UCP2 downregulation in the progress of DR and adenovirus-mediated UCP2 overexpression protected endothelial cells from hyperglycemia-induced oxidative stress and senescence. Under hyperglycemic conditions, UCP2 overexpression attenuated NAD+ downregulation; hence, it promoted the expression and activity of SIRT3, an NAD+-dependent deacetylase regulating mitochondrial function. 3-TYP, a selective SIRT3 inhibitor, abolished the UCP2-mediated protective effect against oxidative stress and senescence. Conclusions: UCP2 overexpression relieved oxidative stress and senescence based on a novel mechanism whereby UCP2 can regulate the NAD+-SIRT3 axis. Targeting oxidative stress and senescence amelioration, UCP2-SIRT3 signaling may serve as a method for the prevention and treatment of DR and other diabetic vascular diseases.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Hiperglucemia , Sirtuina 3 , Humanos , Retinopatía Diabética/genética , Células Endoteliales , NAD , Estrés Oxidativo , Sirtuina 3/genética , Proteína Desacopladora 2/genética
13.
Cell Signal ; 119: 111188, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38657846

RESUMEN

The telomere-associated protein TIN2 localizes to both telomeres and mitochondria. Nevertheless, the impact of TIN2 on retinal pigment epithelial (RPE) cells in diabetic retinopathy (DR) remains unclear. This research aims to examine the role of TIN2 in the senescence of RPE and its potential as a therapeutic target. Western blotting and immunofluorescence staining were utilized to identify TIN2 expression and mitophagy. RT-qPCR was employed to identify senescent associated secretory phenotype (SASP) in ARPE-19 cells infected with TIN2 overexpression. To examine mitochondria and the cellular senescence of RPE, TEM, SA-ß-gal staining, and cell cycle analysis were used. The impact of TIN2 was examined using OCT and immunohistochemistry in mice. DHE staining and ZO-1 immunofluorescence were applied to detect RPE oxidative stress and tight junctions. Our research revealed that increased mitochondria-localized TIN2 aggravated the cellular senescence of RPE cells both in vivo and in vitro under hyperglycemia. TIN2 overexpression stimulated the mTOR signaling pathway in ARPE-19 cells and exacerbated the inhibition of mitophagy levels under high glucose, which can be remedied through the mTOR inhibitor, rapamycin. Knockdown of TIN2 significantly reduced senescence and mitochondrial oxidative stress in ARPE-19 cells under high glucose and restored retinal thickness and RPE cell tight junctions in DR mice. Our study indicates that increased mitochondria-localized TIN2 induced cellular senescence in RPE via compromised mitophagy and activated mTOR signaling. These results propose that targeting TIN2 could potentially serve as a therapeutic strategy in the treatment of DR.


Asunto(s)
Senescencia Celular , Glucosa , Mitofagia , Epitelio Pigmentado de la Retina , Proteínas de Unión a Telómeros , Animales , Humanos , Masculino , Ratones , Línea Celular , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Glucosa/farmacología , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitofagia/efectos de los fármacos , Estrés Oxidativo , Epitelio Pigmentado de la Retina/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Proteínas de Unión a Telómeros/metabolismo
14.
Front Plant Sci ; 15: 1414860, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055363

RESUMEN

Sustaining crop production and food security are threatened by a burgeoning world population and adverse environmental conditions. Traditional breeding methods for vegetable crops are time-consuming, laborious, and untargeted, often taking several years to develop new and improved varieties. The challenges faced by a long breeding cycle need to be overcome. The speed breeding (SB) approach is broadly employed in crop breeding, which greatly shortens breeding cycles and facilities plant growth to obtain new, better-adapted crop varieties as quickly as possible. Potential opportunities are offered by SB in plant factories, where optimal photoperiod, light quality, light intensity, temperature, CO2 concentration, and nutrients are precisely manipulated to enhance the growth of horticultural vegetable crops, holding promise to surmount the long-standing problem of lengthy crop breeding cycles. Additionally, integrated with other breeding technologies, such as genome editing, genomic selection, and high-throughput genotyping, SB in plant factories has emerged as a smart and promising platform to hasten generation turnover and enhance the efficiency of breeding in vegetable crops. This review considers the pivotal opportunities and challenges of SB in plant factories, aiming to accelerate plant generation turnover and improve vegetable crops with precision and efficiency.

15.
Materials (Basel) ; 16(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37297133

RESUMEN

Countersunk head riveted joints (CHRJs) are essential for the aerospace and marine industries. Due to the stress concentration, defects may be generated near the lower boundary of the countersunk head parts of CHRJs and require testing. In this paper, the near-surface defect in a CHRJ was detected based on high-frequency electromagnetic acoustic transducers (EMATs). The propagation of ultrasonic waves in the CHRJ with a defect was analyzed based on the theory of reflection and transmission. A finite element simulation was used to study the effect of the near-surface defect on the ultrasonic energy distribution in the CHRJ. The simulation results revealed that the second defect echo can be utilized for defect detection. The positive correlation between the reflection coefficient and the defect depth was obtained from the simulation results. To validate the relation, CHRJ samples with varying defect depths were tested using a 10-MHz EMAT. The experimental signals were denoised using wavelet-threshold denoising to improve the signal-to-noise ratio. The experimental results demonstrated a linearly positive correlation between the reflection coefficient and the defect depth. The results further showed that high-frequency EMATs can be employed for the detection of near-surface defects in CHRJs.

16.
Materials (Basel) ; 16(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37049091

RESUMEN

Aluminum/rigid polyurethane foam composite plates (ARCPs) are widely used for thermal insulation. The interface debonding generated during manufacturing degrades the thermal insulation performance of an ARCP. In this study, the debonding of an ARCP, a composite plate with a porous and damped layer of rigid polyurethane foam (RPUF), was detected using A0 mode Lamb wave electromagnetic acoustic transducers (EMATs). The low energy transmission coefficient at the interface caused by the large acoustic impedance difference between aluminum and RPUF made the detection difficult. Based on these structural characteristics, an A0 mode Lamb wave with large out-of-plane displacement was used to detect the debonding. EMATs are preferred for generating A0 mode Lamb waves due to their advantages of being noncontact, not requiring a coupling agent, and providing convenient detection. A finite element simulation model considering the damping of the RPUF layer, the damping of the PU film at the interface, and the bonding stiffness of the interface was established. The simulation results indicated that the Lamb wave energy in the aluminum plate transmits into the RPUF layer in small amounts. However, the transmitted energy rapidly attenuated and was not reflected into the aluminum plate, as the RPUF layer was thick and highly damped. Therefore, energy attenuation was evident and could be used to characterize the debonding. An approximately linear relationship between the amplitude of the received signals and the debonding length was obtained. Experiments were performed on an ARCP using EMATs, and the experimental results were in good agreement with the simulation results.

17.
Materials (Basel) ; 16(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36984261

RESUMEN

The novel high-Mn austenitic steel is becoming a promising steel for cryogenic applications of LNG tanks. The welded joints take a critical role in cryogenic service for storage tanks. In this work, we developed well-matched high-Mn welding consumables and prepared the welded joints by shielded metal arc welding (SMAW), submerged arc welding (SAW) and gas tungsten arc welding (GTAW). The detailed welding parameters were proposed first, then the welding quality, mechanical properties, and microstructure were investigated. The results show that good welding quality, excellent mechanical properties, and stable levels of mechanical properties were obtained for high-Mn steel welded joints using similar welding consumables, the solid core of electrodes, and solid welding wires. Notably, the lowest cryogenic absorbed energy was found at 5 mm away from the fusion line rather than at the fusion line. The hardness of the welded joints was detected to be less than 280 HV due to the whole austenitic microstructure.

18.
Antioxidants (Basel) ; 12(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38136184

RESUMEN

This study evaluated the effects of maternal selenium-enriched yeast (SeY) supplementation during late gestation and lactation on sow performance, transfer of selenium (Se) and redox status, and gut microbiota community, as well as on the gut health of offspring. Seventy pregnant sows on day 85 of gestation were randomly allocated to the following two treatments: (1) sows who were fed a basal diet (basal diet contained 0.3 mg/kg Se as Na2SeO3, n = 35); (2) and sows who were fed a SeY-supplemented diet (basal diet with 0.2 mg/kg Se as SeY, n = 35). The offspring piglets were only cross-fostered within the group on day 3 of lactation (L3) according to the pig farm epidemic prevention policy. The plasma, milk, and feces samples from 10 sows, as well as plasma and intestinal samples per treatment, were collected on L1 and L21, respectively. Our results showed that maternal SeY supplementation increased the first week average weight and ADG of piglets (p < 0.05). Compared with the CON group, the SeY supplementation increased the Se content in the plasma and milk of sows and the plasma of piglets on L1 and L21 (p < 0.05). In addition, in sows, the levels of fat in the milk on L21, the level of IgA, T-AOC, and GSH-Px in the plasma on L21, and the level of T-AOC and GSH-Px in the colostrum were increased, while the MDA content was decreased in the plasma on L1 and in the colostrum and milk on L14 (p < 0.05). In the piglet plasma, the levels of IgA on L1 and L21, GSH-Px on L1, and GSH on L21 were increased, while the MDA content was decreased on L1 (p < 0.05). Maternal SeY supplementation up-regulated the small intestinal protein abundances of MUC1, E-cadherin, ZO-1, occludin, and claudin and activated the Nrf2/Keap1 signaling pathway in weaned offspring piglets. The 16S rRNA sequencing results showed that fecal microbiota had distinct separations during lactation, and the relative abundances of unclassified_f_Lachnospiraceae, Prevotaceae_UCG-001, and Lachnospiraceae_NK4A136_group were increased on L1. Collectively, the current findings suggest that maternal SeY supplementation during late gestation and lactation could improve the piglet's growth performance, Se status, antioxidant capacity and immunoglobulins transfer at the first week of lactation, as well as alter the fecal microbiota composition by increasing antioxidative-related and SCFA-producing microbiota in sows. These changes contributed to enhancing the small intestinal barrier function and activating the Nrf2/Keap1 pathway in offspring.

19.
Redox Biol ; 59: 102589, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36577299

RESUMEN

The accumulation of DNA damage induced by oxidative stress is a crucial pathogenic factor of endothelial loss in diabetic vascular complications, but it is still unknown whether aberrant glucose metabolism leads to defective DNA repair and accounts for hyperglycemia-induced endothelial oxidative stress injury. Here, we showed that Foxo1 knockdown alleviated diabetes-associated retinal DNA damage and vascular dysfunction. Mechanistically, FOXO1 knockdown avoided persistent DNA damage and cellular senescence under high glucose in endothelial cells by promoting DNA repair mediated by the MRN (MRE11-RAD50-NBS1 complex)-ATM pathway in response to oxidative stress injury. Moreover, FOXO1 knockdown mediated robust DNA repair by restoring glycolysis capacity under high glucose. During this process, the key glycolytic enzyme PFKFB3 was stimulated and, in addition to its promoting effect on glycolysis, directly participated in DNA repair. Under genotoxic stress, PFKFB3 relocated into oxidative stress-induced DNA damage sites and promoted DNA repair by interaction with the MRN-ATM pathway. Our study proposed that defective glycolysis-dependent DNA repair is present in diabetic endothelial cells and contributes to hyperglycemia-induced vascular dysfunction, which could provide novel therapeutic targets for diabetic vascular complications.


Asunto(s)
Angiopatías Diabéticas , Hiperglucemia , Humanos , Proteínas de Ciclo Celular/metabolismo , Células Endoteliales/metabolismo , Reparación del ADN , Glucólisis , Daño del ADN , Estrés Oxidativo , Hiperglucemia/genética , Hiperglucemia/metabolismo , Glucosa/metabolismo , Angiopatías Diabéticas/metabolismo , Proteína Forkhead Box O1/metabolismo , Fosfofructoquinasa-2/genética , Fosfofructoquinasa-2/metabolismo
20.
J Agric Food Chem ; 71(22): 8367-8380, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37218180

RESUMEN

Thionins are important antibacterial peptides in plants. However, the roles of plant thionins, especially the defensin-dissimilar thionins, in alleviating heavy-metal toxicity and accumulation remain unclear. Here, cadmium (Cd)-related functions and mechanisms of the defensin-dissimilar rice thionin OsThi9 were investigated. OsThi9 was significantly upregulated in response to Cd exposure. OsThi9 was localized to the cell wall and was shown to bind Cd; these characters help to increase Cd tolerance. In Cd-exposed rice plants, OsThi9 overexpression significantly increased cell wall Cd binding, decreasing upward Cd translocation and subsequent Cd accumulation in shoots and straw, while OsThi9 knockout had inverse effects. Importantly, in rice plants grown in Cd-contaminated soils, OsThi9 overexpression significantly reduced Cd accumulation in brown rice (decrease of ≥ 51.8%) without negatively impairing the crop yield and essential elements. Thus, OsThi9 plays an important role in the alleviation of Cd toxicity and accumulation and has significant potential for developing low-Cd rice.


Asunto(s)
Oryza , Contaminantes del Suelo , Tioninas , Cadmio/metabolismo , Tioninas/metabolismo , Oryza/genética , Oryza/metabolismo , Contaminantes del Suelo/metabolismo , Defensinas/genética , Defensinas/metabolismo , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA