Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36232942

RESUMEN

The pseudocapacitor material is easily decomposed when immersed in alkaline solution for a long time. Hence, it is necessary to find a strategy to improve the alkali stability of pseudocapacitor materials. In addition, the relationship between alkali stability and electrochemical performance is still unclear. In this work, a series of Al-based LDH (Layered double hydroxide) and derived Ni/Co-based sulfides are prepared, and corresponding alkali stability and electrochemical performance are analyzed. The alkali stability of CoAl LDH is so poor and can be improved effectively by doping of Ni. Ni1Co2S4 and Ni2Co1Al LDH exhibit an outstanding alkali stability, and Ni2Co1S4 exhibits an extremely poor alkali stability. The variable valence state of Co element and the solubility of Al in alkali solution are the fundamental reasons for the poor alkali stability of CoAl LDH and Ni2Co1S4. Ni2Co1S4 showed an outstanding electrochemical performance in a three-electrode system, which is better than that of Ni1Co2S4, indicating that there is no direct correlation between alkali stability and electrochemical properties. Sulfidation improved the electrical conductivity and electrochemical activity of electrode materials, whereas alkali etching suppressed the occurrence of the electrochemical reaction. Overall, this work provides a clear perspective to understand the relationship between alkali stability and electrochemical properties.


Asunto(s)
Álcalis , Hidróxidos , Cobalto/química , Hidróxidos/química , Sulfuros
2.
J Colloid Interface Sci ; 660: 10-20, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38241858

RESUMEN

Layered double hydroxide (LDH) has been attracted widespread attention in supercapacitor due to their unique layered structure and associated advantages. However, the inherent limitations of low electrical conductivity and reaction kinetics rate of LDH restrict its widespread application. Various modification techniques, such as heterojunction formation, phosphorization and introduction of phosphorus vacancies, are employed to modify LDH with the goal of improving the electrochemical performance. Preparation of composite materials using MoB MBene as conductive template and phosphorization are the effective ways for enhancing the electrical conductivity of electrode materials. MoB MBene is prepared using a modified method that combines NaOH etching and a high-temperature hydrothermal process. The presence of phosphorus vacancy is beneficial for enhancing the kinetics rate during electrode reactions. Through the synergistic effect of various modification methods, MP2 demonstrates an optimal electrochemical performance with a superior specific capacitance of 1731.19F/g (238.28 mAh g-1) at 1 A/g. It also demonstrates an impressive rate capacity of 81.28 % at 10 A/g and maintains a satisfactory capacitance retention of 88.14 % after 5000 cycles. In addition, a fabricated MP2//AC ASC device achieves an impressive energy density of 39.91 Wh kg-1 at the power density of 948.25 W kg-1 and demonstrates satisfactory cycling stability of 78.76 % after 5000 cycles. This work presents a comprehensive framework for analyzing the impact of material structure, components, and crystal phases on energy storage performance. It also examines the regulatory impact of different modification methods on energy storage mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA